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Preface to the 1986 Edition

This book evolved from the first term of a two-term course on the physics of charged particle
acceleration that I taught at the University of New Mexico and at Los Alamos National
Laboratory. The first term covered conventional accelerators in the single particle limit. The
second term covered collective effects in charged particle beams, including high current
transport and instabilities. The material was selected to make the course accessible to graduate
students in physics and electrical engineering with no previous background in accelerator theory.
Nonetheless, I sought to make the course relevant to accelerator researchers by including
complete derivations and essential formulas.

The organization of the book reflects my outlook as an experimentalist. I followed a building
block approach, starting with basic material and adding new techniques and insights in a
programmed sequence. I included extensive review material in areas that would not be familiar
to the average student and in areas where my own understanding needed reinforcement. I tried to
make the derivations as simple as possible by making physical approximations at the beginning
of the derivation rather than at the end. Because the text was intended as an introduction to the
field of accelerators, I felt that it was important to preserve a close connection with the physical
basis of the derivations; therefore, I avoided treatments that required advanced methods of
mathematical analysis. Most of the illustrations in the book were generated numerically from a
library of demonstration microcomputer programs that I developed for the courses. Accelerator
specialists will no doubt find many important areas that are not covered. I apologize in advance
for the inevitable consequence of writing a book of finite length.
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1
 Introduction

   This book is an introduction to the theory of charged particle acceleration. It has two primary
roles:

1.A unified, programmed summary of the principles underlying all charged particle
accelerators.

2.A reference collection of equations and material essential to accelerator development
and beam applications.

   The book contains straightforward expositions of basic principles rather than detailed theories
of specialized areas.
   Accelerator research is a vast and varied field. There is an amazingly broad  range of beam
parameters for different applications, and there is a correspondingly diverse set of technologies to
achieve the parameters. Beam currents range from nanoamperes (10-9 A) to megaamperes (106

A). Accelerator pulselengths range from less than a nanosecond to steady state. The species of
charged particles range from electrons to heavy ions, a mass difference factor approaching 106.
The energy of useful charged particle beams ranges from a few electron volts (eV) to almost 1
TeV (1012 eV).
   Organizing  material  from such a broad field is inevitably an imperfect process.  Before 
beginning  our  study of beam physics, it is useful to review  the  order  of  topics  and to define
clearly the objectives and limitations  of  the  book.  The  goal  is  to  present  the  theory  of
accelerators  on  a  level  that  facilitates  the design of accelerator components  and the operation
of accelerators for applications. In order to  accomplish  this effectively, a considerable amount of
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potentially interesting material must be omitted:

1. Accelerator theory is interpreted as a mature field. There is no attempt to review the
history of accelerators.

2. Although an effort has been made to include the most recent developments in
accelerator science, there is insufficient space to include a detailed review of past and
present literature.

3. Although the theoretical treatments are aimed toward an understanding of real devices,
it is not possible to describe in detail specific accelerators and associated technology over
the full range of the field.

These deficiencies are compensated by the books and papers tabulated in the bibliography.
   We begin with some basic definitions. A charged particle is an elementary particle or a
macroparticle which contains an excess of positive or negative charge. Its motion is determined
mainly by interaction with electromagnetic forces. Charged particle acceleration is the transfer of
kinetic energy to a particle by the application of an electric field. A charged particle beam is a
collection of particles distinguished by three characteristics: (1) beam particles have high kinetic
energy compared to thermal energies, (2) the particles have a small spread in kinetic energy, and
(3) beam particles move approximately in one direction. In most circumstances, a beam has a
limited extent in the direction transverse to the average motion. The antithesis of a beam is an
assortment of particles in thermodynamic equilibrium.
   Most applications of charged particle accelerators depend on the fact that beam particles have
high energy and good directionality. Directionality is usually referred to as coherence. Beam
coherence determines, among other things, (1) the applied force needed to maintain a certain
beam radius, (2) the maximum beam propagation distance, (3) the minimum focal spot size, and
(4) the properties of an electromagnetic wave required to trap particles and accelerate them to
high energy.
   The process for generating charged particle beams is outlined in Table 1.1.. Electromagnetic
forces result from mutual interactions between charged particles. In accelerator theory, particles
are separated into two groups: (1) particles in the beam and (2) charged particles that are
distributed on or in surrounding materials. The latter group is called the external charge. Energy is
required to set up distributions of external charge; this energy is transferred to the beam particles
via electromagnetic forces. For example, a power supply can generate a voltage difference
between metal plates by subtracting negative charge from one plate and moving it to the other. A
beam particle that moves between the plates is accelerated by attraction to the charge on one plate
and repulsion from the charge on the other.
   Electromagnetic forces are resolved into electric and magnetic components. Magnetic forces are
present only when charges are in relative motion. The ability of a group of external charged 



Introduction

3

particles to exert forces on beam particles is summarized in the applied electric and magnetic
fields. Applied forces are usually resolved into those aligned along the average direction of the
beam and those that act transversely. The axial forces are acceleration forces; they increase or
decrease the beam energy. The transverse forces are confinement forces. They keep the beam
contained to a specific cross-sectional area or bend the beam in a desired direction. Magnetic
forces are always perpendicular to the velocity of a particle; therefore, magnetic fields cannot
affect the particle's kinetic energy. Magnetic forces are confinement forces. Electric forces can
serve both functions. 
   The distribution and motion of external charge determines the fields, and the fields determine
the force on a particle via the Lorentz force law, discussed in Chapter 3. The expression for force
is included in an appropriate equation of motion to find the position and velocity of particles in the
beam as a function of time. A knowledge of representative particle orbits makes it possible to
estimate average parameters of the beam, such as radius, direction, energy, and current. It is also 
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possible to sum over the large number of particles in the beam to find charge density ?b and
current density jb. These quantities act as source terms for beam-generated electric and magnetic
fields. 
   This procedure is sufficient to describe low-current beams where the contribution to total
electric and magnetic fields from the beam is small compared to those of the external charges.
This is not the case at high currents. As shown in Table 1.1, calculation of beam parameters is no
longer a simple linear procedure. The calculation must be self-consistent. Particle trajectories are
determined by the total fields, which include contributions from other beam particles. In turn, the
total fields are unknown until the trajectories are calculated. The problem must be solved either by
successive iteration or application of the methods of collective physics.
   Single-particle processes are covered in this book. Although theoretical treatments for some
devices can be quite involved, the general form of all derivations follows the straight-line
sequence of Table 1.1. Beam particles are treated as test particles responding to specified fields. A
continuation of this book addressing collective phenomena in charged particle beams is available:
S. Humphries, Charged Particle Beams (Wiley, New York, 1990). A wide variety of useful
processes for both conventional and high-power pulsed accelerators are described by collective
physics, including (1) beam cooling, (2) propagation of beams injected into vacuum, gas, or
plasma, (3) neutralization of beams, (4) generation of microwaves, (5) limiting factors for
efficiency and flux, (6) high-power electron and ion guns, and (7) collective beam instabilities.
   An outline of the topics covered in this book is given in Table 1.2. Single-particle theory can be
subdivided into two categories: transport and acceleration. Transport is concerned with beam
confinement. The study centers on methods for generating components of electromagnetic force
that localize beams in space. For steady-state beams extending a long axial distance, it is sufficient
to consider only transverse forces. In contrast, particles in accelerators with time-varying fields
must be localized in the axial direction. Force components must be added to the accelerating fields
for longitudinal particle confinement (phase stability).
   Acceleration of charged particles is conveniently divided into two categories: electrostatic and
electromagnetic acceleration. The accelerating field in electrostatic accelerators is the gradient of
an electrostatic potential. The peak energy of the beam is limited by the voltage that can be
sustained without breakdown. Pulsed power accelerators are included in this category because
pulselengths are almost always long enough to guarantee simple electrostatic acceleration.
   In order to generate beams with kinetic energy above a few million electron volts, it is necessary
to utilize time-varying electromagnetic fields. Although particles in an electromagnetic accelerator
experience continual acceleration by an electric field, the field does not require 
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prohibitively large voltages in the laboratory. The accelerator geometry is such that inductively
generated electric fields cancel electrostatic fields except at the position of the beam.

Electromagnetic accelerators are divided into two subcategories: nonresonant and resonant
accelerators. Nonresonant accelerators are pulsed; the motion of particles need not be closely
synchronized with the pulse waveform. Nonresonant electromagnetic accelerators are essentially
step-up transformers, with the beam acting as a high-voltage secondary. The class is subdivided
into linear and circular accelerators. A linear accelerator is a straight-through machine. Generally,
injection into the accelerator and transport is not difficult; linear accelerators are
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 useful for initial acceleration of low-energy beams or the generation of high-flux beams. In
circular machines, the beam is recirculated many times through the acceleration region during the
pulse. Circular accelerators are well suited to the production of beams with high kinetic energy. 
   The applied voltage in a resonant accelerator varies harmonically at a specific frequency. The
word resonant characterizes two aspects of the accelerator: (1) electromagnetic oscillations in
resonant cavities or waveguides are used to transform input microwave power from low to high
voltage and (2) there is close coupling between properties of the particle orbits and time
variations of the accelerating field. Regarding the second property, particles must always be at the
proper place at the proper time to experience a field with accelerating polarity. Longitudinal
confinement is a critical issue in resonant accelerators. Resonant accelerators can also be
subdivided into linear and circular machines, each category with its relative virtues.
   In the early period of accelerator development, the quest for high kinetic energy, spurred by
nuclear and elementary particle research, was the overriding goal. Today, there is increased
emphasis on a diversity of accelerator applications. Much effort in modern accelerator theory is
devoted to questions of current limits, beam quality, and the evolution of more efficient and
cost-effective machines. The best introduction to modern accelerators is to review some of the
active areas of research, both at high and low kinetic energy. The list in Table 1.3 suggests the
diversity of applications and potential for future development.
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2
Particle Dynamics

Understanding and utilizing the response of charged particles to electromagnetic forces is the
basis of particle optics and accelerator theory. The goal is to find the time-dependent position
and velocity of particles, given specified electric and magnetic fields. Quantities calculated from
position and velocity, such as total energy, kinetic energy, and momentum, are also of interest.
The nature of electromagnetic forces is discussed in Chapter 3. In this chapter, the response of
particles to general forces will be reviewed. These are summarized in laws of motion. The
Newtonian laws, treated in the first sections, apply at low particle energy. At high energy,
particle trajectories must be described by relativistic equations. Although Newton's laws and
their implications can be understood intuitively, the laws of relativity cannot since they apply to
regimes beyond ordinary experience. Nonetheless, they must be accepted to predict particle
behavior in high-energy accelerators. In fact, accelerators have provided some of the most direct
verifications of relativity.

This chapter reviews particle mechanics. Section 2.1 summarizes the properties of electrons
and ions. Sections 2.2-2.4 are devoted to the equations of Newtonian mechanics. These are
applicable to electrons from electrostatic accelerators of in the energy range below 20 kV. This
range includes many useful devices such as cathode ray tubes, electron beam welders, and
microwave tubes. Newtonian mechanics also describes ions in medium energy accelerators used
for nuclear physics. The Newtonian equations are usually simpler to solve than relativistic
formulations. Sometimes it is possible to describe transverse motions of relativistic particles
using Newtonian equations with a relativistically corrected mass. This approximation is treated
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in Section 2.10. In the second part of the chapter, some of the principles of special
relativity are derived from two basic postulates, leading to a number of useful formulas
summarized in Section 2.9.

2.1 CHARGED PARTICLE PROPERTIES

In the theory of charged particle acceleration and transport, it is sufficient to treat particles as
dimensionless points with no internal structure. Only the influence of the electromagnetic force,
one of the four fundamental forces of nature, need be considered. Quantum theory is
unnecessary except to describe the emission of radiation at high energy.

This book will deal only with ions and electrons. They are simple, stable particles. Their
response to the fields applied in accelerators is characterized completely by two quantities: mass
and charge. Nonetheless, it is possible to apply much of the material presented to other particles.
For example, the motion of macroparticles with an electrostatic charge can be treated by the
methods developed in Chapters 6-9. Applications include the suspension of small objects in
oscillating electric quadrupole fields and the acceleration and guidance of inertial fusion targets.
At the other extreme are unstable elementary particles produced by the interaction of
high-energy ions or electrons with targets. Beamlines, acceleration gaps, and lenses are similar
to those used for stable particles with adjustments for different mass. The limited lifetime may
influence hardware design by setting a maximum length for a beamline or confinement time in a
storage ring.

An electron is an elementary particle with relatively low mass and negative charge. An ion is
an assemblage of protons, neutrons, and electrons. It is an atom with one or more electrons
removed. Atoms of the isotopes of hydrogen have only one electron. Therefore, the associated
ions (the proton, deuteron, and triton) have no electrons. These ions are bare nucleii consisting
of a proton with 0, 1, or 2 neutrons. Generally, the symbol Z denotes the atomic number of an
ion or the number of electrons in the neutral atom. The symbol Z* is often used to represent the
number of electrons removed from an atom to create an ion. Values of Z* greater than 30 may
occur when heavy ions traverse extremely hot material. If Z* = Z, the atom is fully stripped. The
atomic mass number A is the number of nucleons (protons or neutrons) in the nucleus. The mass
of the atom is concentrated in the nucleus and is given approximately as Amp, where mp is the
proton mass.

Properties of some common charged particles are summarized in Table 2.1. The meaning of
the rest energy in Table 2.1 will become clear after reviewing the theory of relativity. It is listed
in energy units of million electron volts (MeV). An electron volt is defined as the energy gained
by a particle having one fundamental unit of charge (q = ±e = ±1.6 × 10-19 coulombs) passing
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through a potential difference of one volt. In MKS units, the electron volt is

I eV = (1.6 × 10-19 C) (1 V) = 1.6 x 10-19 J.

Other commonly used metric units are keV (103 eV) and GeV (109 eV). Relativistic mechanics
must be used when the particle kinetic energy is comparable to or larger than the rest energy.
There is a factor of 1843 difference between the mass of the electron and the proton. Although
methods for transporting and accelerating various ions are similar, techniques for electrons are
quite different. Electrons are relativistic even at low energies. As a consequence, synchronization
of electron motion in linear accelerators is not difficult. Electrons are strongly influenced by
magnetic fields; thus they can be accelerated effectively in a circular induction accelerator (the
betatron). High-current electron beams (�10 kA) can be focused effectively by magnetic fields.
In contrast, magnetic fields are ineffective for high-current ion beams. On the other hand, it is
possible to neutralize the charge and current of a high-current ion beam easily with light
electrons, while the inverse is usually impossible.

2.2 NEWTON'S LAWS OF MOTION

The charge of a particle determines the strength of its interaction with the electromagnetic force.
The mass indicates the resistance to a change in velocity. In Newtonian mechanics, mass is
constant, independent of particle motion.
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x � (x,y,z). (2.1)

v � (vx,vy,vz) � (dx/dt,dy/dt,dz/dt) � dx/dt, (2.2)

p � mov � (px,py,pz). (2.3)

dp/dt � F. (2.4)

Figure 2.1.Position and velocity vectors of a
particle in Cartesian coordinates.

The Newtonian mass (orrest mass) is denoted by a subscript: me for electrons, mp for protons,
and mo for a general particle. A particle's behavior is described completely by its position in
three-dimensional space and its velocity as a function of time. Three quantities are necessary to
specify position; the positionx is a vector. In the Cartesian coordinates (Figure 2.1),x can be
written

The particle velocity is

Newton's first law states that a moving particle follows a straight-line path unless acted upon
by a force. The tendency to resist changes in straight-line motion is called the momentum,p.
Momentum is the product of a particle's mass and velocity,

Newton's second law defines force F through the equation
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dpx/dt � Fx, dpy/dt � Fy, dpz/dt � Fz. (2.5)

�T � � F�dx. (2.6)

�T � � Fzdz � � Fz (dz/dt) dt. (2.7)

T � � movz (dvz/dt) dt � mov
2
z /2. (2.8)

In Cartesian coordinates, Eq. (2.4) can be written

Motions in the three directions are decoupled in Eq. (2.5). With specified force components,
velocity components in the x, y, and z directions are determined by separate equations. It is
important to note that this decoupling occurs only when the equations of motion are written in
terms of Cartesian coordinates. The significance of straight-line motion is apparent in Newton's
first law, and the laws of motion have the simplest form in coordinate systems based on straight
lines. Caution must be exercised using coordinate systems based on curved lines. The analog of
Eq. (2.5) for cylindrical coordinates (r, 0, z) will be derived in Chapter 3. In curvilinear
coordinates, momentum components may change even with no force components along the
coordinate axes.

2.3 KINETIC ENERGY

Kinetic energy is the energy associated with a particle's motion. The purpose of particle
accelerators is to impart high kinetic energy. The kinetic energy of a particle, T, is changed by
applying a force. Force applied to a static particle cannot modify T; the particle must be moved.
The change in T (work) is related to the force by

The integrated quantity is the vector dot product;dx is an incremental change in particle
position.
In accelerators, applied force is predominantly in one direction. This corresponds to the
symmetry axis of a linear accelerator or the main circular orbit in a betatron. With acceleration
along the z axis, Eq. (2.6) can be rewritten

The chain rule of derivatives has been used in the last expression. The formula for T in
Newtonian mechanics can be derived by (1) rewriting F, using Eq. (2.4), (2) taking T = 0when
v, = 0, and (3) assuming that the particle mass is not a function of velocity:
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movz(dvz/dt) � �(�U/�z)(dz/dt). (2.9)

Fz � ��U/�z, F � ��U. (2.10)

� � ux�/�x � uy�/�y � uz�/�z. (2.11)

(x,v,m,p,T) � (x �,v �,m�,p �,T �)

The differential relationshipd(movz
2/2)/dt = movz dvz/dt leads to the last expression. The

differences of relativistic mechanics arise from the fact that assumption 3 is not true at high
energy.

When static forces act on a particle, the potential energy U can be defined. In this
circumstance, the sum of kinetic and potential energies, T + U, is aconstant called the total
energy. If the force is axial, kinetic and potential energy are interchanged as the particle moves
along the z axis, so that U = U(z). Setting the total time derivative of T + U equal to 0 and
assuming�U/�t = 0 gives

The expression on the left-hand side equals Fzvz. The static force and potential energy are related
by

where the last expression is the general three-dimensional form written in terms of the vector
gradient operator,

The quantitiesux, uy, anduz are unit vectors along the Cartesian axes.
Potential energy is useful for treating electrostatic accelerators. Stationary particles at the

source can be considered to have high U (potential for gaining energy). This is converted to
kinetic energy as particles move through the acceleration column. If the potential function, U(x,
y, z), is known, focusing and accelerating forces acting on particles can be calculated.

2.4 GALILEAN TRANSFORMATIONS

In describing physical processes, it is often useful to change the viewpoint to a frame of
reference that moves with respect to an original frame. Two common frames of reference in
accelerator theory are the stationary frame and the rest frame. The stationary frame is identified
with the laboratory or accelerating structure. An observer in the rest frame moves at the average
velocity of the beam particles; hence, the beam appears to be at rest. A coordinate transforma-
tion converts quantities measured in one frame to those that would be measured in another
moving with velocity u. The transformation of the properties of a particle can be written
symbolically as
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x �
� x, y �

� y, z�
� z � ut. (2.12)

v �

x � vx, v �

y � vy, v �

z � vx, � u. (2.13)

T �
� T � ½mo(�2uvz�u 2). (2.14)

Figure 2.2. Galilean transformation between coordinate
systems

where primed quantities are those measured in the moving frame. The operation that transforms
quantities depends onu. If the transformation is from the stationary to the rest frame,u is the
particle velocityv.

The transformations of Newtonian mechanics (Galilean transformations) are easily understood
by inspecting Figure 2.2. Cartesian coordinate systems are defined so that the z axes are colinear
with u and the coordinates are aligned at t = 0. This is consistent with the usual convention of
taking the average beam velocity along the z axis. The position of a particle transforms as

Newtonian mechanics assumes inherently that measurements of particle mass and time intervals
in frames with constant relative motion are equal: m' = m and dt' = dt. This is not true in a
relativistic description. Equations (2.12) combined with the assumption of invariant time
intervals imply thatdx' = dx anddx'/dt' = dx/dt. The velocity transformations are

Since m' = m, momenta obey similar equations. The last expression shows that velocities are
additive. The axial velocity in a third frame moving at velocity w with respect to the x' frame is
related to the original quantity by vz" = vz - u - w.

Equations (2.13) can be used to determine the transformation for kinetic energy,
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c � 2.998×108 m/s. (2.15)

Measured kinetic energy depends on the frame of reference. It can be either larger or smaller in a
moving frame, depending on the orientation of the velocities. This dependence is an important
factor in beam instabilities such as the two-stream instability.

2.5 POSTULATES OF RELATIVITV

The principles of special relativity proceed from two postulates:

1.The laws of mechanics and electromagnetism are identical in all inertial frames of
reference.

2.Measurements of the velocity of light give the same value in all inertial frames.

Only the theory of special relativity need be used for the material of this book. General relativity
incorporates the gravitational force, which is negligible in accelerator applications. The first
postulate is straightforward; it states that observers in anyinertial framewould derive the same
laws of physics. An inertial frame is one that moves with constant velocity. A corollary is that it
is impossible to determine an absolute velocity. Relative velocities can be measured, but there is
no preferred frame of reference. The second postulate follows from the first. If the velocity of
light were referenced to a universal stationary frame, tests could be devised to measure absolute
velocity. Furthermore, since photons are the entities that carry the electromagnetic force, the
laws of electromagnetism would depend on the absolute velocity of the frame in which they
were derived. This means that the forms of the Maxwell equations and the results of
electrodynamic experiments would differ in frames in relative motion. Relativistic mechanics,
through postulate 2, leaves Maxwell's equations invariant under a coordinate transformation.
Note that invariance does not mean that measurements of electric and magnetic fields will be the
same in all frames. Rather, such measurements will always lead to the same governing
equations.

The validity of the relativistic postulates is determined by their agreement with experimental
measurements. A major implication is that no object can be induced to gain a measured velocity
faster than that of light,

This result is verified by observations in electron accelerators. After electrons gain a kinetic
energy above a few million electron volts, subsequent acceleration causes no increase in electron
velocity, even into the multi-GeV range. The constant velocity of relativistic particles is
important in synchronous accelerators, where an accelerating electromagnetic wave must be
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�t � � 2D �/c. (2.16)

Figure 2.3 Effect of time dilation on the observed rates of a
photon clock. (a) Clock rest frame. (b) Stationary frame.

matched to the motion of the particle.

2.6 TIME DILATION

In Newtonian mechanics, observers in relative motion measure the same time interval for an
event (such as the decay of an unstable particle or the period of an atomic oscillation). This is
not consistent with the relativistic postulates. The variation of observed time intervals
(depending on the relative velocity) is calledtime dilation. The termdilation implies extending
or spreading out.

The relationship between time intervals can be demonstrated by the clock shown in Figure 2.3,
where double transits (back and forth) of a photon between mirrors with known spacing are
measured. This test could actually be performed using a photon pulse in a mode-locked laser. In
the rest frame (denoted by primed quantities), mirrors are separated by a distance D', and the
photon has no motion along the z axis. The time interval in the clock rest frame is

If the same event is viewed by an observer moving past the clock at a velocity - u, the photon
appears to follow the triangular path shown in Figure 2.3b. According to postulate 2, the photon
still travels with velocity c but follows a longer path in a double transit. The distance traveled in
the laboratory frame is
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c�t � 2 D 2
� (u�t/2)2 ½,

�t �
2D/c

(1 � u 2/c2)½
. (2.17)

Figure 2.4. Experiment to demonstrate
invariance of transverse lengths between
frames in relative motion

or

In order to compare time intervals, the relationship between mirror spacing in the stationary
and rest frames (D and D') must be known. A test to demonstrate that these are equal is
illustrated in Figure 2.4. Two scales have identical length when at rest. Electrical contacts at the
ends allow comparisons of length when the scales have relative motion. Observers are stationed
at thecenters of the scales. Since the transit times of electrical signals from the ends to the middle
are equal in all frames, the observers agree that the ends are aligned simultaneously. Measured
length may depend on the magnitude of the relative velocity, but it cannot depend on the
direction since there is no preferred frame or orientation in space. Let one of the scales move;
the observer in the scale rest frame sees no change of length. Assume, for the sake of argument,
that the stationary observer measures that the moving scale has shortened in the transverse
direction, D < D'. The situation is symmetric, so that the roles of stationary and rest frames can
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�t �
�t �

(1�u 2/c2)½
. (2.18)

� � u/c, ��(1�u 2/c2)�½. (2.19)

� � (1�1/�2)½. (2.21)

� � (1��2)�½, (2.20)

�t � ��t �. (2.22)

be interchanged. This leads to conflicting conclusions. Both observers feel that their clock is the
same length but the other is shorter. The only way to resolve the conflict is to take D = D'. The
key to the argument is that the observers agree on simultaneity of the comparison events
(alignment of the ends). This is not true in tests to compare axial length, as discussed in the next
section. Taking D = D', the relationship between time intervals is

Two dimensionless parameters are associated with objects moving with a velocity u in a
stationary frame:

These parameters are related by

A time interval�t measured in a frame moving at velocity u with respect to an object is related
to an interval measured 'in the rest frame of the object,�t', by

For example, consider an energetic�+ pion (rest energy 140 MeV) produced by the interaction
of a high-energy proton beam from an accelerator with a target. If the pion moves at velocity
2.968 × 108 m/s in the stationary frame, it has a� value of 0.990 and a corresponding� value of
8.9. The pion is unstable, with a decay time of 2.5 × 10-8 s at rest. Time dilation affects the decay
time measured when the particle is in motion. Newtonian mechanics predicts that the average
distance traveled from the target is only 7.5 in, while relativistic mechanics (in agreement with
observation) predicts a decay length of 61 in for the high-energy particles.

2.7 LORENTZ CONTRACTION

Another familiar result from relativistic mechanics is that a measurement of the length of a
moving object along the direction of its motion depends on its velocity. This phenomenon is
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c�t1 � (L � u�t1),

�t2 � (L � u�t2)/c.

�t � �t1 � �t2 �
L

c�u
�

L

c�u
,

�t �
2L/c

1�u 2/c2
.

Figure 2.5 Lorentz contraction of a photon clock. (a) Clock rest frame.
(bl) Stationary frame

known as Lorentz contraction. The effect can be demonstrated by considering the clock of
Section 2.6 oriented as shown in Figure 2.5.

The detector on the clock measures the double transit time of light between the mirrors. Pulses
are generated when a photon leaves and returns to the left-hand mirror. Measurement of the
single transit time would require communicating the arrival time of the photon at the right-hand
mirror to the timer at the left-hand mirror. Since the maximum speed with which this
information can be conveyed is the speed of light, this is equivalent to a measurement of the
double transit time. In the clock rest frame, the time interval is�t' = 2L'/c.

To a stationary observer, the clock moves at velocity u. During the transit in which the photon
leaves the timer, the right-hand mirror moves away. The photon travels a longer distance in the
stationary frame before being reflected. Let�t1, be the time for the photon to travel from the left
to right mirrors. During this time, the right-hand mirror moves a distance u At,. Thus,

where L is the distance between mirrors measured in the stationary frame. Similarly, on the
reverse transit, the left-hand mirror moves toward the photon. The time to complete this leg is

The total time for the event in the stationary frame is

or
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L � L �/�. (2.23)

x �
� x, (2.24)

y �
� y, (2.25)

z�
�

z�ut

(1�u 2/c2)½
� �(z�ut), (2.26)

t � �
t�uz/c2

(1�u 2/c2)½
� � t�

uz

c2
. (2.27)

Time intervals cannot depend on the orientation of the clock, so that Eq. (2.22) holds. The above
equations imply that

Thus, a moving object appears to have a shorter length than the same object at rest.
The acceleration of electrons to multi-GeV energies in a linear accelerator provides an

interesting example of a Lorentz contraction effect. Linear accelerators can maintain longitudinal
accelerating gradients of, at most, a few megavolts per meter. Lengths on the kilometer scale are
required to produce high-energy electrons. To a relativistic electron, the accelerator appears to
be rushing by close to the speed of light. The accelerator therefore has a contracted apparent
length of a few meters. The short length means that focusing lenses are often unnecessary in
electron linear accelerators with low-current beams.

2.8 LORENTZ TRANSFORMATIONS

Charged particle orbits are characterized by position and velocity at a certain time, (x, v, t). In
Newtonian mechanics, these quantities differ if measured in a frame moving with a relative
velocity with respect to the frame of the first measurement. The relationship between quantities
was summarized in the Galilean transformations.

The Lorentz transformations are the relativistic equivalents of the Galilean transformations. In
the same manner as Section 2.4, the relative velocity of frames is taken in the z direction and the
z and z' axes are colinear. Time is measured from the instant that the two coordinate systems are
aligned (z = z' = 0 at t = t' = 0). Theequations relating position and time measured in one frame
(unprimed quantities) to those measured in another frame moving with velocity u (primed
quantities) are
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dx�
� dx, dy�

� dy, dz�
� �(dz�udt),

dt � � �dt (1�uvz/c
2).

v �

x �

vx

� (1�uvz/c
2)

. (2.28)

v �

x � � vx. (2.29)

dz�

dt �
�

�dt (dz/dt�u)

�dt (1�uvz/c
2)

,

v �

z �
vz�u

1�uvz/c
2

. (2.30)

The primed frame is not necessarily the rest frame of a particle. One major difference between
the Galilean and Lorentz transformations is the presence of the� factor. Furthermore,
measurements of time intervals are different in frames in relative motion. Observers in both
frames may agree to set their clocks at t = t' = 0 (when z = z' = 0), butthey will disagree on the
subsequent passage of time [Eq. (2.27)]. This also implies that events at different locations in z
that appear to be simultaneous in one frame of reference may not be simultaneous in another.

Equations (2.24)-(2.27) may be used to derive transformation laws for particle velocities. The
differentials of primed quantities are

In the special case where a particle has only a longitudinal velocity equal to u, the particle is at
rest in the primed frame. For this condition, time dilation and Lorentz contraction proceed
directly from the above equations.

Velocity in the primed frame is dx'/dt'. Substituting from above,

When a particle has no longitudinal motion in the primed frame (i.e., the primed frame is the rest
frame and vz = u), the transformation of transverse velocity is

This result follows directly from time dilation. Transverse distances are the same in both frames,
but time intervals are longer in the stationary frame.

The transformation of axial particle velocities can be found by substitution for dz' and dt',

or
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vz �
v �

z�u

1�uv�

z/c
2

. (2.31)

dp/dt � F. (2.32)

p � �mov. (2.33)

m � �mo. (2.34)

This can be inverted to give

Equation (2.31) is the relativistic velocity addition law. If a particle has a velocity vz' in the
primed frame, then Eq. (2.31) gives observed particle velocity in a frame moving at-u. For vz'
approaching c, inspection of Eq. (2.31) shows that vz also approaches c. The implication is that
there is no frame of reference in which a particle is observed to move faster than the velocity of
light. A corollary is that no matter how much a particle's kinetic energy is increased, it will never
be observed to move faster than c. This property has important implications in particle
acceleration. For example, departures from the Newtoniain velocity addition law set a limit on the
maximum energy available from cyclotrons. In high-power, multi-MeV electron extractors,
saturation of electron velocity is an important factor in determining current propagation limits.

2.9 RELATIVISTIC FORMULAS

The motion of high-energy particles must be described by relativistic laws of motion. Force is
related to momentum by the same equation used in Newtonian mechanics

This equation is consistent with the Lorentz transformations if the momentum is defined as

The difference from the Newtonian expression is the� factor. It is determined by the total
particle velocity v observed in the stationary frame,� = (1-v2/c2)-½. One interpretation of Eq.
(2.33) is that a particle's effective mass increases as it approaches the speed of light. The
relativistic mass is related to the rest mass by

The relativistic mass grows without limit as vz approaches c. Thus, the momentum increases
although there is a negligible increase in velocity.

In order to maintain Eq. (2.6), relating changes of energy to movement under the influence of a
force, particle energy must be defined as



Particle Dynamics

23

E � �moc
2. (2.35)

T � E � moc
2
� moc

2(��1). (2.36)

E � c2p 2
� m2

o c4, (2.37)

v � c2p/E. (2.38)

E �

moc
2

1�v2/c2
� moc

2 (1 � v2/c2
� ...). (2.39)

The energy is not zero for a stationary particle, but approaches moc
2, which is called the rest

energy. The kinetic energy (the portion of energy associated with motion) is given by

Two useful relationships proceed directly from Eqs. (2.20). (2.33), and (2.35):

where p2 = p�p, and

The significance of the rest energy and the region of validity of Newtonian mechanics is
clarified by expanding Eq. (2.35) in limit that v/c « 1.

The Newtonian expression for T [Eq. (2.8)] is recovered in the second term. The first term is a
constant component of the total energy, which does not affect Newtonian dynamics. Relativistic
expressions must be used when T� moc2. The rest energy plays an important role in relativistic
mechanics.

Rest energy is usually given in units of electron volts. Electrons are relativistic when T is in the
MeV range, while ions (with a much larger mass) have rest energies in the GeV range. Figure 2.6
plots� for particles of interest for accelerator applications as a function of kinetic energy. The
Newtonian result is also shown. The graph shows saturation of velocity at high energy and the
energy range where departures from Newtonian results are significant.
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Figure 2.6.Particle velocity normalized to the speed of light as a function
of kinetic energy. (a) Protons: solid line, relativistic predicted, dashed
line, Newtonian predicition. (b) Relativistic predictions for various
particles.
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�movx
d�/dt

�
�

dvx/dt

vx

� Fx. (2.40)

E � moc
2 [1 � (v2

z�v2
x )/2c2

� 3(v2
z�v2

x )2/8c4
� ...].

�mo

dvx

dt
� Fx. (2.41)

2.10 NONRELATIVISTIC APPROXIMATION FOR
TRANSVERSE MOTION

A relativistically correct description of particle motion is usually more difficult to formulate and
solve than one involving Newtonian equations. In the study of the transverse motions of charged
particle beams, it is often possible to express the problem in the form of Newtonian equations
with the rest mass replaced by the relativistic mass. This approximation is valid when the beam is
well directed so that transverse velocity components are small compared to the axial velocity of
beam particles. Consider the effect of focusing forces applied in the x direction to confine
particles along the z axis. Particles make small angles with this axis, so that vx is always small
compared to vz. With F = ux Fx, Eq. (2.32) can be written in the form

Equation (2.39) can be rewritten as

When vx « vz, relative changes in� resulting from the transverse motion are small. In Eq. (2.40),
the first term in parenthesis is much less than the second, so that the equation of motion is
approximately

This has the form of a Newtonian expression with mo replaced by�mo.
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3

Electric and Magnetic Forces

Electromagnetic forces determine all essential features of charged particle acceleration and
transport. This chapter reviews basic properties of electromagnetic forces. Advanced topics, such
as particle motion with time-varying forces, are introduced throughout the book as they are
needed.

It is convenient to divide forces between charged particles into electric and magnetic
components. The relativistic theory of electrodynamics shows that these are manifestations of a
single force. The division into electric and magnetic interactions depends on the frame of
reference in which particles are observed.

Section 3.1 introduces electromagnetic forces by considering the mutual interactions between
pairs of stationary charges and current elements. Coulomb's law and the law of Biot and Savart
describe the forces. Stationary charges interact through the electric force. Charges in motion
constitute currents. When currents are present, magnetic forces also act.

Although electrodynamics is described completely by the summation of forces between
individual particles, it is advantageous to adopt the concept of fields. Fields (Section 3.2) are
mathematical constructs. They summarize the forces that could act on a test charge in a region
with a specified distribution of other charges. Fields characterize the electrodynamic properties of
the charge distribution. The Maxwell equations (Section 3.3) are direct relations between electric
and magnetic fields. The equations determine how fields arise from distributed charge and current
and specify how field components are related to each other.
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F(1�2) �
1

4πεo

q1q2ur

r 2
(newtons). (3.1)

εo � 8.85×10�12 (A�s/V�m).

Electric and magnetic fields are often visualized as vector lines since they obey equations similar
to those that describe the flow of a fluid. The field magnitude (or strength) determines the density
of tines. In this interpretation, the Maxwell equations are fluidlike equations that describe the
creation and flow of field lines. Although it is unnecessary to assume the physical existence
of field lines, the concept is a powerful aid to intuit complex problems.

The Lorentz law (Section 3.2) describes electromagnetic forces on a particle as a function of
fields and properties of the test particle (charge, position and velocity). The Lorentz force is the
basis for all orbit calculations in this book. Two useful subsidiary functions of field quantities, the
electrostatic and vector potentials, are discussed in Section 3.4. The electrostatic potential (a
function of position) has a clear physical interpretation. If a particle moves in a static electric field,
the change in kinetic energy is equal to its charge multiplied by the change in electrostatic
potential. Motion between regions of different potential is the basis of electrostatic acceleration.
The interpretation of the vector potential is not as straightforward. The vector potential will
become more familiar through applications in subsequent chapters.

Section 3.6 describes an important electromagnetic force calculation, motion of a charged
particle in a uniform magnetic field. Expressions for the relativistic equations of motion in
cylindrical coordinates are derived in Section 3.5 to apply in this calculation.

3.1 FORCES BETWEEN CHARGES AND CURRENTS

The simplest example of electromagnetic forces, the mutual force between two stationary point
charges, is illustrated in Figure 3.1a. The force is directed along the line joining the two particles,
r . In terms ofur (a vector of unit length aligned along r), the force on particle 2 from particle 1 is

The value ofεo is

In Cartesian coordinates,r = (x2-x1)ux + (y2-y1)uy + (z2-z1)uz. Thus, r2=(x2-x1)
2+(y2-y1)

2+(z2-z1)
2.

The force on particle 1 from particle 2 is equal and opposite to that of Eq. (3.1). Particles with the
same polarity of charge repel one another. This fact affects high-current beams. The electrostatic
repulsion of beam particles causes beam expansion in the absence of strong focusing.

Currents are charges in motion. Current is defined as the amount of charge in a certain cross
section (such as a wire) passing a location in a unit of time. The mks unit of current is the ampere
(coulombs per second). Particle beams may have charge and current. Sometimes, charge effects
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dF �

µo

4π

i2dl2×(i1dl1×ur)

r 2
. (3.2)

µo � 4π×10�7
� 1.26×10�6 (V�s/A�m).

dF(1�2) � �

µo

4π

i1i2dl1dl2

r 2
ur.

can be neutralized by adding particles of opposite-charge sign, leaving only the effects of current.
This is true in a metal wire. Electrons move through a stationary distribution of positive metal
ions. The force between currents is described by the law of Biot and Savart. If i1dl1 and i2dl2 are
current elements (e.g., small sections of wires) oriented as in Figure 3.1b, the force on element 2
from element 1 is

whereur is a unit vector that points from 1 to 2 and

Equation (3.2) is more complex than (3.1); the direction of the force is determined by vector cross
products. Resolution of the cross products for the special case of parallel current elements is
shown in Figure 3.1c. Equation (3.2) becomes

Currents in the same direction attract one another. This effect is important in high-current
relativistic electron beams. Since all electrons travel in the same direction, they constitute parallel
current elements, and the magnetic force is attractive. If the electric charge is neutralized by ions,
the magnetic force dominates and relativistic electron beams can be self-confined.
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F � �
n

1
4πεo

qoqnurn

r 2
n

,

E(x) � �
n

1
4πεo

qnurn

r 2
n

. (3.3)

3.2 THE FIELD DESCRIPTION AND THE LORENTZ FORCE

It is often necessary to calculate electromagnetic forces acting on a particle as it moves through
space. Electric forces result from a specified distribution of charge. Consider, for instance, a
low-current beam in an electrostatic accelerator. Charges on the surfaces of the metal electrodes
provide acceleration and focusing. The electric force on beam particles at any position is given in
terms of the specified charges by

where qo is the charge of a beam particle and the sum is taken over all the charges on the
electrodes (Fig. 3.2).

In principle, particle orbits can be determined by performing the above calculation at each point
of each orbit. A more organized approach proceeds from recognizing that (1) the potential force
on a test particle at any position is a function of the distribution of external charges and (2) the net
force is proportional to the charge of the test particle. The functionF(x)/qo characterizes the
action of the electrode charges. It can be used in subsequent calculations to determine the orbit of
any test particle. The function is called theelectric fieldand is defined by
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F(x) � qo E(x). (3.4)

dF � idl × B. (3.5)

idl � qdl
|dl|/|v|

� qv.

The sum is taken over all specified charges. It may include freely moving charges in conductors,
bound charges in dielectric materials, and free charges in space (such as other beam particles). If
the specified charges move, the electric field may also be a function of time-, in this case, the
equations that determine fields are more complex than Eq. (3.3).

The electric field is usually taken as a smoothly varying function of position because of the l/r2

factor in the sum of Eq. (3.3). The smooth approximation is satisfied if there is a large number of
specified charges, and if the test charge is far from the electrodes compared to the distance
between specified charges. As an example, small electrostatic deflection plates with an applied
voltage of 100 V may have more than 10" electrons on the surfaces. The average distance
between electrons on the conductor surface is typically less than 1 µm.

WhenE is known, the force on a test particle with charge qo as a function of position is

This relationship can be inverted for measurements of electric fields. A common nonperturbing
technique is to direct a charged particle beam through a region and infer electric field by the
acceleration or deflection of the beam.

A summation over current elements similar to Eq. (3.3) can be performed using the law of Biot
and Savart to determine forces that can act on a differential test element of current. This function
is called the magnetic fieldB. (Note that in some texts, the term magnetic field is reserved for the
quantityH, andB is called the magnetic induction.) In terms of the field, the magnetic force on idl
is

Equation (3.5) involves the vector cross product. The force is perpendicular to both the current
element and magnetic field vector.

An expression for the total electric and magnetic forces on a single particle is required to treat
beam dynamics. The differential current element, idl, must be related to the motion of a single
charge. The correspondence is illustrated in Figure 3.3. The test particle has charge q and velocity
v. It moves a distance dl in a time dt =�dl�/�v�. The current (across an arbitrary cross section)
represented by this motion is q/(�dl�/�v�). A moving charged particle acts like a current element
with
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F � qv × B. (3.6)

F(x,t) � q (E � v × B). (3.7)

The magnetic force on a charged particle is

Equations (3.4) and (3.6) can be combined into a single expression (the Lorentz
force law)

Although we derived Equation (3.7) for static fields, it holds for time-dependent fields as well.
The Lorentz force law contains all the information on the electromagnetic force necessary to treat
charged particle acceleration. With given fields, charged particle orbits are calculated by
combining the Lorentz force expression with appropriate equations of motion. In summary, the
field description has the following advantages.

1. Fields provide an organized method to treat particle orbits in the presence of large
numbers of other charges. The effects of external charges are summarized in a single,
continuous function.
2. Fields are themselves described by equations (Maxwell equations). The field concept
extends beyond the individual particle description. Chapter 4 will show that field lines
obey geometric relationships. This makes it easier to visualize complex force distributions
and to predict charged particle orbits.
3. Identification of boundary conditions on field quantities sometimes makes it possible to
circumvent difficult calculations of charge distributions in dielectrics and on conducting
boundaries.
4. It is easier to treat time-dependent electromagnetic forces through direct solution for
field quantities.

The following example demonstrates the correspondence between fields and charged particle
distributions. The parallel plate capacitor geometry is shown in Figure 3.4. Two infinite parallel
metal plates are separated by a distance d. A battery charges the plates by transferring electrons
from one plate to the other. The excess positive charge and negative electron charge spread
uniformerly on the inside surfaces. If this were not true, there would be electric fields inside the
metal. The problem is equivalent to calculating the electric fields from two thin sheets of charge,



Electric and Magnetic Forces

32

dFx �
2πρ dρ σqo cosθ

4πεo (ρ2
�x2)

,

as shown in Figure 3.4. The surface charge densities, ±σ (in coulombs per square meter), are
equal in magnitude and opposite in sign.

A test particle is located between the plates a distancex from the positive electrode. Figure 3.4
defines a convenient coordinate system. The force from charge in the differential annulus
illustrated is repulsive. There is force only in the x direction; by symmetry transverse forces
cancel. The annulus has charge (2πρ dρ σ) and is a distance (ρ2 + x2)½ from the test charge. The
total force [from Eq. (3.1)] is multiplied by cosθ to give the x component.

where cosθ = x/(ρ2 + x2)½. Integrating the above expression overρ from 0 to� gives the net force
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F �
� �

�

0

ρ dρ σqo x

2εo (ρ2
�x2)3/2

�

qoσ

2εo

. (3.8)

Ex(x) � (F �
�F �)/q � σ/εo. (3.9)

δ(x�xo) � 0, if x � xo,

�dx�dy�dz δ(x�xo) � 1.
(3.10)

A similar result is obtained for the force from the negative-charge layer. It is attractive and adds
to the positive force. The electric field is found by adding the forces and dividing by the charge of
the test particle

The electric field between parallel plates is perpendicular to the plates and has uniform magnitude
at all positions. Approximations to the parallel plate geometry are used in electrostatic deflectors;
particles receive the same impulse independent of their position between the plates.

3.3 THE MAXWELL EQUATIONS

The Maxwell equations describe how electric and magnetic fields arise from currents and charges.
They are continuous differential equations and are most conveniently written if charges and
currents are described by continuous functions rather than by discrete quantities. The source
functions are thecharge density, ρ(x, y, z, t) andcurrent densityj (x, y, z, t).

The charge density has units of coulombs per cubic meters (in MKS units). Charges are carried
by discrete particles, but a continuous density is a good approximation if there are large numbers
of charged particles in a volume element that is small compared to the minimum scale length of
interest. Discrete charges can be included in the Maxwell equation formulation by taking a charge
density of the formρ = qδ[x - xo(t)]. The delta function has the following properties:

The integral is taken over all space.
The current density is a vector quantity with units amperes per square meter. It is defined as the

differential flux of charge, or the charge crossing a small surface element per second divided by
the area of the surface. Current density can be visualized by considering how it is measured (Fig.
3.5). A small current probe of known area is adjusted in orientation at a point in space until
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��E � ρ/εo, (3.13)

�×B � (1/c2) �E/�t � µoj, (3.12)

�×E � ��B/�t, (3.11)

��B � 0. (3.14)

the current reading is maximized. The orientation of the probe gives the direction, and the current
divided by the area gives the magnitude of the current density.

The general form of the Maxwell equations in MKS units is

Although these equations will not be derived, there will be many opportunities in succeeding
chapters to discuss their physical implications. Developing an intuition and ability to visualize field
distributions is essential for understanding accelerators. Characteristics of the Maxwell equations
in the static limit and the concept of field lines will be treated in the next chapter.

No distinction has been made in Eqs. (3.1l)-(3.14) between various classes of charges that may
constitute the charge density and current density. The Maxwell equations are sometimes written in
terms of vector quantitiesD andH. These are subsidiary quantities in which the contributions
from charges and currents in linear dielectric or magnetic materials have been extracted. They
will be discussed in Chapter 5.

3.4 ELECTROSTATIC AND VECTOR POTENTIALS

The electrostatic potential is a scalar function of the electric field. In other words, it is specified by
a single value at every point in space. The physical meaning of the potential can be demonstrated
by considering the motion of a charged particle between two parallel plates (Fig. 3.6). We want to
find the change in energy of a particle that enters that space between the plates with kinetic energy
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dpx/dt � Fx � qEx.

(dpx/dx)(dx/dt) � vx dpx/dx � qEx.

c2px dpx/dx � E dE/dx.

dE/dx � [c2px/E] dpx/dx � vx dpx/dx. (3.15)

∆E � q � dxEx. (3.16)

T. Section 3.2 has shown that the electric field Ex, is uniform. The equation of motion is therefore

The derivative can be rewritten using the chain rule to give

The relativistic energyE of a particle is related to momentum by Eq. (2.37). Taking the derivative
in x of both sides of Eq. (2.37) gives

This can be rearranged to give

The final form on the right-hand side results from substituting Eq. (2.38) for the term in brackets.
The expression derived in Eq. (3.15) confirms the result quoted in Section 2.9. The right-hand
side isdpx/dt which is equal to the forceFx. Therefore, the relativistic form of the energy [Eq.
(2.35)] is consistent with Eq. (2.6). The integral of Eq. (3.15) between the plates is
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φ � �� E�dx. (3.17)

E � moc
2
� To � q(φ�φo), (3.18)

E � moc
2
� qφ

γ � 1 � qφ/moc
2. (3.19)

E � ��φ � (�φ/�x) ux � (�φ/�y) uy � (�φ/�z) uz

�Ex ux � Ey uy � Ez uz.
(3.20)

φ(x) � �
n

qn/4πεo

|x�xn|
. (3.21)

Theelectrostatic potentialφ is defined by

The change in potential along a path in a region of electric fields is equal to the integral of electric
field tangent to the path times differential elements of pathlength. Thus, by analogy with the
example of the parallel plates [Eq. (3.1 6)]∆E = -q∆φ. If electric fields are static, the total energy
of a particle can be written

where To is the particle kinetic energy at the point whereφ = φo.
The potential in Eq. (3.18) is not defined absolutely; a constant can be added without changing

the electric field distribution. In treating electrostatic acceleration, we will adopt the convention
that the zero point of potential is defined at the particle source (the location where particles have
zero kinetic energy). The potential defined in this way is called the absolute potential (with respect
to the source). In terms of the absolute potential, the total energy can be written

or

Finally, the static electric field can be rewritten in the differential form,

If the potential is known as a function of position, the three components of electric field can be
found by taking spatial derivatives (the gradient operation). The defining equation for electrostatic
fields [Eq. (3.3)] can be combined with Eq. (3.20) to give an expression to calculate potential
directly from a specified distribution of charges
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φ(x) �
1

4πεo
��� d 3x � ρ(x �)

|x�x �|
. (3.22)

B � � × A. (3.23)

A(x) �
µo

4π ��� d 3x � j(x �)

|x�x �|
. (3.24)

The denominator is the magnitude of the distance from the test charge to thenth charge. The
integral form of this equation in terms of charge density is

Although Eq. 3.22 can be used directly to find the potential, we will usually use differential
equations derived from the Maxwell equations combined with boundary conditions for such
calculations (Chapter 4). Thevector potentialA is another subsidiary quantity that can be
valuable for computing magnetic fields. It is a vector function related to the magnetic field
through the vector curl operation

This relationship is general, and holds for time-dependent fields. We will useA only for static
calculations. In this case, the vector potential can be written as a summation over source current
density

Compared to the electrostatic potential, the vector potential does not have a straightforward
physical interpretation. Nonetheless, it is a useful computational device and it is helpful for the
solution of particle orbits in systems with geometry symmetry. In cylindrical systems it is
proportional to the number of magnetic field lines encompassed within particle orbits (Section
7.4).

3.5 INDUCTIVE VOLTAGE AND DISPLACEMENT CURRENT

The static concepts already introduced must be supplemented by two major properties of
time-dependent fields for a complete and consistent theory of electrodynamics. The first is the fact
that time-varying magnetic fields lead to electric fields. This is the process of magnetic induction.
The relationship between inductively generated electric fields and changing magnetic flux is stated
in Faraday's law. This effect is the basis of betatrons and linear induction accelerators. The second
phenomenon, first codified by Maxwell, is that a time-varying electric field leads to a virtual
current in space, the displacement current. We can verify that displacement currents "exist" by
measuring the magnetic fields they generate. A current monitor such as a Rogowski loop
enclosing an empty space with changing electric fields gives a current reading. The combination of
inductive fields with the displacement current leads to predictions of electromagnetic oscillations.
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ψ � �� B�n dS, (3.25)

V � �dψ/dt. (3.26)

Propagating and stationary electromagnetic waves are the bases for RF (radio-frequency) linear
accelerators.

Faraday's law is illustrated in Figure 3.7a. A wire loop defines a surfaceS. The magnetic fluxψ
passing through the loop is given by

wheren is a unit vector normal toSanddSis a differential element of surface area. Faraday's law
states that a voltage is induced around the loop when the magnetic flux changes according to

The time derivative ofψ is the total derivative. Changes inψ can arise from a time-varying field at
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Q � εoExA.

i � εo A (�Ex/�t). (3.27)

jd � εo (�Ex/�t). (3.28)

constant loop position, motion of the loop to regions of different field magnitude in a static field,
or a combination of the two.

The terminductioncomes from induce, to produce an effect without a direct action. This is
illustrated by the example of Figure 3.7b. an inductively coupled plasma source. (A plasma is a
conducting medium of hot, ionized gas.) Such a device is often used as an ion source for
accelerators. In this case, the plasma acts as the loop. Currents driven in the plasma by changing
magnetic flux ionize and heat the gas through resistive effects. The magnetic flux is generated by
windings outside the plasma driven by a high-frequency ac power supply. The power supply
couples energy to the plasma through the intermediary of the magnetic fields. The advantage of
inductive coupling is that currents can be generated without immersed electrodes that may
introduce contaminants.

The sign convention of Faraday's law implies that the induced plasma currents flow in the
direction opposite to those of the driving loop. Inductive voltages always drive reverse currents in
conducting bodies immersed in the magnetic field; therefore, oscillating magnetic fields are
reduced or canceled inside conductors. Materials with this property are called diamagnetic.
Inductive effects appear in the Maxwell equations on the right-hand side of Eq. (3.11).
Application of the Stokes theorem (Section 4.1) shows that Eqs. (3.11) and (3.26) are equivalent.

The concept of displacement current can be understood by reference to Figure 3.7c. An electric
circuit consists of an ac power supply connected to parallel plates. According to Eq. 3.9, the
power supply produces an electric field E. between the plates by moving an amount of charge

whereA is the area of the plates. Taking the time derivative, the current through the power supply
is related to the change in electric field by

The partial derivative of Eq. (3.27) signifies that the variation results from the time variation of Ex

with the plates at constant position. Suppose we considered the plate assembly as a black box
without knowledge that charge was stored inside. In order to guarantee continuity of current
around the circuit, we could postulate a virtual current density between the plates given bv

This quantity, the displacement current density, is more than just an abstraction to account for a
change in space charge inside the box. The experimentally observed fact is that there are magnetic
fields around the plate assembly that identical to those that would be produced by a real wore
connecting the plates and carrying the current specified by Eq. (3.27) (see Section 4.6). There is
thus a parallelism of time-dependent effects in electromagnetism. Time-varving magnetic fields
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c � 1/ εoµo , (3.29)

x � r cosθ, y � r sinθ, z � z, (3.30)

r � x2
�y2, θ � tan�1(y/x). (3.31)

produce electric fields, and changing electric fields produce magnetic fields. The coupling and
interchange of electric and magnetic field energy is the basis of electromagnetic oscillations.
Displacement currents or, equivalently, the generation of magnetic fields by time-varying electric
fields, enter the Maxwell equations on the right side of Eq. (3.12). Noting that

we see that the displacement current is added to any real current to determine the net magnetic
field.

3.6 RELATIVISTIC PARTICLE MOTION IN CYLINDRICAL
COORDINATES

Beams with cylindrical symmetry are encountered frequently in particle accelerators. For example,
electron beams used in applications such as electron microscopes or cathode ray tubes have
cylindrical cross sections. Section 3.7 will introduce an important application of the Lorentz force,
circular motion in a uniform magnetic field. In order to facilitate this calculation and to derive
useful formulas for subsequent chapters, the relativistic equations of motion for particles in
cylindrical coordinates are derived in this section.

Cylindrical coordinates, denoted by (r, 0, z), are based on curved coordinate lines. We
recognize immediately that equations of the formdpr/dt = Fr are incorrect. This form implies that
particles subjected to no radial force move in a circular orbit (r = constant,dpr/dt = 0). This is not
consistent with Newton's first law. A simple method to derive the proper equations is to
express dp/dt = F in Cartesian coordinates and make a coordinate transformation by direct
substitution.

Reference to Figure 3.8 shows that the following equations relate Cartesian coordinates to
cylindrical coordinates sharing a common origin and a common z axis, and with the line (r, 0, 0)
lying on the x axis:

and

Motion along the z axis is described by the same equations in both frames, dpz/dt = Fz. We will
thus concentrate on equations in the (r, 0) plane. The Cartesian equation of motion in the x
direction is
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dpx/dt � Fx. (3.32)

px � prcosθ � p
θ
sinθ, Fx � Frcosθ � F

θ
sinθ.

(dpr/dt)cosθ � prsinθ(dθ/dt) � (dp
θ
/dt)sinθ � p

θ
cosθ(dθ/dt) � Frcosθ � F

θ
sinθ.

dpr/dt � Fr � [p
θ

dθ/dt], (3.33)

dp
θ
/dt � F

θ
� [pr dθ/dt]. (3.34)

Centrigfugal force� γmov
2
θ
/r, (3.35)

Figure 3.8 shows that

Substituting in Eq. (3.32),

The equation must hold at all positions, or at any value ofθ. Thus, terms involving cosθ and sinθ
must be separately equal. This yields the cylindrical equations of motion

The quantities in brackets are correction terms for cylindrical coordinates. Equations (3.33) and
(3.34) have the form of the Cartesian equations if the bracketed terms are considered as virtual
forces. The extra term in the radial equation is called the centrifugal force, and can be rewritten
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Coriolis force � �γmovrvθ/r. 3.36

noting that v
θ

= rdθ/dt. The bracketed term in the azimuthal equation is the Coriolis force, and can
be written

Figure 3.9 illustrates the physical interpretation of the virtual forces. In the first example, a
particle moves on a force-free, straight-line orbit. Viewed in the cylindrical coordinate system, the
particle (with no initial vr) appears to accelerate radially, propelled by the centrifugal force. At
large radius, when v

θ
approaches 0, the acceleration appears to stop, and the particle moves

outward at constant velocity. The Coriolis force is demonstrated in the second example. A
particle from large radius moves in a straight line past the origin with nonzero impact parameter.
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dp/dt � d(γmov)/dt � q v × B. (3.37)

The azimuthal velocity, which was initially zero, increases as the particle moves inward with
negative u, and decreases as the particle moves out. The observer in the cylindrical coordinate
system notes a negative and then positive azimuthal acceleration.

Cylindrical coordinates appear extensively in accelerator theory. Care must be exercised to
identify properly the orientation of the coordinates. For example, the z axis is sometimes aligned
with the beam axis, white in other cases, the z axis may be along a symmetry axes of the
accelerator. In this book, to avoid excessive notation, (r, 0, z) will be used for all cylindrical
coordinate systems. Illustrations will clarify the geometry of each case as it is introduced.

3.7 MOTION OF CHARGED PARTICLES IN A UNIFORM MAGNETIC
FIELD

Motion of a charged particle in a uniform magnetic field directed along the z axis,B = Bouz, is
illustrated in Figure 3.10. Only the magnetic component of the Lorentz force is included. The
equation of motion is

By the nature of the cross product, the magnetic force is always perpendicular to the velocity of
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qv
θ
Bo � γmov

2
θ
/r.

rg � γmovθ/|q|Bo. (3.38)

ωg � |q|Bo/γmo. (3.39)

x(t) � xo � rg cos(ωgt),

y(t) � yo � rg sin(ωgt),

the particle. There is no force along a differential element of pathlength,dx. Thus,�F�dx = 0.
According to Eq. (2.6), magnetic fields perform no work and do not change the kinetic energy of
the particle. In Eq. (3.37),γ is constant and can be removed from the time derivative.

Because the force is perpendicular to B, there is no force along the z axis. Particles move in this
direction with constant velocity. There is a force in the x-y plane. It is of constant magnitude
(since the total particle velocity cannot change), and it is perpendicular to the particle motion. The
projection of particle motion in the x-y plane is therefore a circle. The general three-dimensional
particle orbit is a helix.

If we choose a cylindrical coordinate system with origin at the center of the circular orbit, then
dpr/dt = 0, and there is no azimuthal force. The azimuthal equation of motion [Eq. (3.34)] is
satisfied trivially with these conditions. The radial equation [Eq. (3.33)] is satisfied when the
magnetic force balances the centrifugal force, or

The particle orbit radius is thus

This quantity is called thegyroradius. It is large for high-momentum particles; the gyroradius is
reduced by applying stronger magnetic field. The point about which the particle revolves is called
thegyrocenter. Another important quantity is the angular frequency of revolution of the particle,
thegyrofrequency. This is given byωg = v

θ
/r, or

The particle orbits in Cartesian coordinates are harmonic,

where xo and yo are the coordinates of the gyrocenter. The gyroradius and gyrofrequency arise in
all calculations involving particle motion in magnetic fields. Magnetic confinement of particles in
circular orbits forms the basis for recirculating high-energy accelerators, such as the cyclotron,
synchrotron, microtron, and betatron.
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4

Steady-State Electric and Magnetic Fields

A knowledge of electric and magnetic field distributions is required to determine the orbits of
charged particles in beams. In this chapter, methods are reviewed for the calculation of fields
produced by static charge and current distributions on external conductors. Static field
calculations appear extensively in accelerator theory. Applications include electric fields in beam
extractors and electrostatic accelerators, magnetic fields in bending magnets and spectrometers,
and focusing forces of most lenses used for beam transport.

Slowly varying fields can be approximated by static field calculations. A criterion for the static
approximation is that the time for light to cross a characteristic dimension of the system in
question is short compared to the time scale for field variations. This is equivalent to the condition
that connected conducting surfaces in the system are at the same potential. Inductive accelerators
(such as the betatron) appear to violate this rule, since the accelerating fields (which may rise over
many milliseconds) depend on time-varying magnetic flux. The contradiction is removed by noting
that the velocity of light may be reduced by a factor of 100 in the inductive media used in these
accelerators. Inductive accelerators are treated in Chapters 10 and 11. The study of rapidly
varying vacuum electromagnetic fields in geometries appropriate to particle acceleration is
deferred to Chapters 14 and 15.

The static form of the Maxwell equations in regions without charges or currents is reviewed in
Section 4.1. In this case, the electrostatic potential is determined by a second-order differential
equation, the Laplace equation. Magnetic fields can be determined from the same equation by
defining a new quantity, the magnetic potential. Examples of numerical (Section 4.2) and analog



Steady State Electric and Magnetic Fields

46

��E � 0, (4.1)

�×E � 0, (4.2)

��B � 0, (4.3)

�×B � 0. (4.4)

�Ex/�x � �Ey/�y � �Ez/�z � 0. (4.5)

(Section 4.3) methods for solving the Laplace equation are discussed. The numerical technique of
successive overrelaxation is emphasized since it provides insight into the physical content of the
Laplace equation. Static electric field calculations with field sources are treated in Section 4.4.
The classification of charge is emphasized; a clear understanding of this classification is essential
to avoid confusion when studying space charge and plasma effects in beams. The final sections
treat the calculation of magnetic fields from specific current distributions through direct solution
of the Maxwell equations (Section 4.5) and through the intermediary of the vector potential
(Section 4.6).

4.1 STATIC FIELD EQUATIONS WITH NO SOURCES

When there are no charges or currents present. the Maxwell equations have the form

These equations resolve into two decoupled and parallel sets for electric fields [Eqs. (4.1) and
(4.2)] and magnetic fields [Eqs. (4.3) and (4.4)]. Equations (4.1)-(4.4) hold in regions such as that
shown in Figure 4.1. The charges or currents that produce the fields are external to the volume of
interest. In electrostatic calculations, the most common calculation involves charge distributed on
the surfaces of conductors at the boundaries of a vacuum region.

Equations (4.1)-(4.4) have straightforward physical interpretations. Similar conclusions hold for
both sets, so we will concentrate on electric fields. The form for the divergence equation [Eq.
(4.1)] in Cartesian coordinates is

An example is illustrated in Figure 4.2. The electric field is a function of x and y. The meaning of
the divergence equation can be demonstrated by calculating the integral of the normal electric
field over the surface of a volume with cross-sectional area A and thickness∆x. The integral over
the left-hand side is AEx(x). If the electric field is visualized in terms of vector field lines, the
integral is the flux of lines into the volume through the left-hand face. The electric field line flux
out of the volume through the right-hand face is AEx(x + ∆x).
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�� E�n da � ��� (��E) dV. (4.6)

When the electric field is a smooth function of x, variations about a point can be approximated by
a Taylor expansion. The right-hand integral is A[Ex(x) + ∆x �Ex/�x]. The condition that�Ex/�x =
0 leads to a number of parallel conclusions.

1.The integrals of normal electric field over both faces of the volume are equal.
2.All field lines that enter the volume must exit.
3.The net flux of electric field lines into the volume is zero.
4. No field lines originate inside the volume.

Equation (4.5) is the three-dimensional equivalent of these statements.
Thedivergence operatorapplied to a vector quantity gives the effluence of the quantity away

from a point in space. The divergence theorem can be written

Equation (4.6) states that the integral of the divergence of a vector quantity over all points of a
volume is equal to the surface integral of the normal component of the vector over the surface of
the volume. With no enclosed charges, field lines must flow through a volume as shown in Figure
4.3. The same holds true for magnetic fields. The main difference between electric and magnetic
fields is that magnetic field lilies have zero divergence under all conditions, even in regions with
currents. This means that magnetic field lines never emanate from a source point. They either
extend indefinitely or are self-connected.
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� E�dl � �� (�×E)�n da. (4.7)

The curl equations determine another geometric property of field lines. This
property proceeds from the Stokes theorem, which states that

The quantities in Eq. (4.7) are defined in Figure 4.4;S is a two-dimensional surface in space and
dl is a length element oriented along the circumference. The integral on the left-hand side is taken
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around the periphery. The right-hand side is the surface integral of the component of the vector v
x E normal to the surface. If the curl is nonzero at a point in space, then field lines form closed
loops around the point. Figure 4.5 'illustrates points in vector fields with zero and nonzero curl..
The study of magnetic fields around current-carrying wires (Section 4.5) will illustrate a vector
function with a nonzero curl.
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�×E �

ux uy uz

�/�x �/�y �/�z

Ex Ey Ez

. (4.8)

�× � ux

�Ez

�y
�

�Ey

�z
� uy

�Ex

�z
�

�Ez

�x
� uz

�Ey

�x
�

�Ex

�y
. (4.9)

E � ��φ. (4.10)

��(�φ) � 0,

�
2φ � �

2φ/�x2
� �

2φ/�y2
� �

2φ/�z2
� 0. (4.11)

For reference, the curl operator is written in Cartesian coordinates as

The usual rule for evaluating a determinant is used. The expansion of the above expression is

The electrostatic potential functionφ can be defined when electric fields are static. The electric
field is the gradient of this function,

Substituting forE in Eq. (4.1) gives

or

The operator symbolized by�2 in Eq. (4.11) is called the Laplacian operator. Equation (4.11) is
theLaplace equation. It determines the variation ofφ (and henceE) in regions with no charge.
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The curl equation is automatically satisfied through the vector identity�×(�φ)= 0.
The main reason for using the Laplace equation rather than solving for electric fields directly is

that boundary conditions can be satisfied more easily. The difficulty in solving the Maxwell
equations directly lies in determining boundary conditions for vector fields on surrounding
conducting surfaces. The electrostatic potential is a scalar function; we can show that the
potential is a constant on a connected metal surface. Metals contain free electrons; an electric field
parallel to the surface of a metal drives large currents. Electrons in the metal adjust their positions
to produce a parallel component of field equal and opposite to the applied field. Thus, at a metal
surfaceE(parallel) = 0 andE(normal) is unspecified. Equation (4.10) implies that electric field
lines are always normal to surfaces of constantφ. This comes about because the gradient of a
function (which indicates the direction in which a function has maximum rate of variation) must
always be perpendicular to surfaces on which the function is constant (Fig. 4.6). Since a metal
surface is everywhere perpendicular to the electric field, it must be an equipotential surface with
the boundary conditionφ = constant.
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In summary, electric field lines have the following properties in source-free
regions:

(a) Field lines are continuous. All lines that enter a volume eventually exit.
(b)Field lines do not kink, curl, or cross themselves.
(c)Field lines do not cross each other, since this would result in a point of infinite flux.
(d)Field lines are normal to surfaces of constant electrostatic potential.
(e) Electric fields are perpendicular to metal surfaces.

Fairly accurate electric field sketches can be made utilizing the laminar flow nature of electric field
lines and the above properties. Even with the availability of digital computers, it is valuable to
generate initial sketches of field patterns. This saves time and gives insight into the nature of
fields. An example of an electrostatic field pattern generated by the method of squares is shown in



Steady State Electric and Magnetic Fields

53

�
2Um � 0. (4.12)

�φ(x�∆/2)/�x � [Φ(i�1,j,k)�Φ(i,j,k)]/∆. (4.13)

�

�x
�φ(x)
�x

�
1
∆

�φ(x�∆/2)
�x

�

�φ(x�∆/2)
�x

Figure 4.7. In this method, a number of equipotential lines between metal surfaces are sketched.
Electric field lines normal to the equipotential lines and electrodes are added. Since the density of
field lines is proportional to the distance between equipotentials, a valid final solution results when
the elements between equipotential and field lines approach as close as possible to squares. The
process is iterative and requires only some drawing ability and an eraser.

It is also possible to define formally a magnetic potential Um such that

The function Um should not be confused with the vector potential. Methods used for electric field
problems in source-free regions can also be applied to determine magnetic fields. We will defer
use of Eq. (4.12) to Chapter 5. An understanding of magnetic materials is necessary to determine
boundary conditions for Um.

4.2 NUMERICAL SOLUTIONS TO THE LAPLACE EQUATION

The Laplace equation determines electrostatic potential as a function of position. Resulting
electric fields can then be used to calculate particle orbits. Electrostatic problems may involve
complex geometries with surfaces at many different potentials. In this case, numerical methods of
analysis are essential.

Digital computers handle discrete quantities, so the Laplace equation must be converted from a
continuous differential equation to a finite difference formulation. As shown in Figure 4.8, the
quantityΦ(i, j, k) is defined at discrete points in space. These points constitute a
three-dimensional mesh. For simplicity, the mesh spacing∆ between points in the three Cartesian
directions is assumed uniform. The quantityΦ has the property that it equalsφ(x, y, z) at the
mesh points. Ifφ is a smoothly varying function, then a linear interpolation ofΦ gives a good
approximation forφ at any point in space. In summary,Φ is a mathematical construct used to
estimate the physical quantity,φ.

The Laplace equation forφ implies an algebraic difference equation forΦ. The spatial position
of a mesh point is denoted by (i, j, k), with x = i∆, y = j∆, and z = k∆. The x derivative ofφ to
the right of the point (x, y, z) is approximated by

A similar expression holds for the derivative at x -∆/2. The second derivative is the difference of
derivatives divided by∆, or
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�
2φ

�x2
�

Φ(i�1,j,k) � 2Φ(i,j,k) � Φ(i�1,j,k)]

∆2
. (4.14)

Φ(i,j,k) � 1/6 [Φ(i�1,j,k) � Φ(i�1,j,k) � Φ(i,j�1,k)

� Φ(i,j�1,k) � Φ(i,j,k�1) � Φ(i,j,k�1)].
(4.15)

Combining expressions,

Similar expressions can be found for the�
2φ/�y2 and�2φ/�z2 terms. Setting�2φ1 = 0 implies

In summary, (1)Φ(i, j, k) is a discrete function defined as mesh points, (2) the interpolation of
Φ(i, j, k) approximatesφ(x, y, z), and (3) ifφ(x, y, z) satisfies the Laplace equation, thenΦ(i, j, k)
is determined by Eq. (4.15).

According to Eq. (4.15), individual values ofΦ(i, j, k) are the average of their six neighboring
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R(i,j) � ¼[Φ(i�1,j) � Φ(i�1,j) � Φ(i,j�1) � Φ(i,j�1)] � Φ(i,j) (4.16)

Φ(i,j)n�1 � Φ(i,j)n � ωR(i,j)n. (4.17)

points. Solving the Laplace equation is an averaging process; the solution gives the smoothest
flow of field lines. The net length of all field lines is minimized consistent with the boundary
conditions. Therefore, the solution represents the state with minimum field energy (Section 5.6).

There are many numerical methods to solve the finite difference form for the Laplace equation.
We will concentrate on themethod of successive ouerrelaxation. Although it is not the fastest
method of solution, it has the closest relationship to the physical content of the Laplace equation.
To illustrate the method, the problem will be formulated on a two-dimensional, square mesh.
Successive overrelaxation is an iterative approach. A trial solution is corrected until it is close to a
valid solution. Correction consists of sweeping through all values of an intermediate solution to
calculateresiduals, defined by

If R(i, j) is zero at all points, thenΦ(i, j) is the desired solution. An intermediate result can be
improved by adding a correction factor proportional to R(i, j),

The valueω = 1 is the obvious choice, but in practice values ofω between 1 and 2 produce a
faster convergence (hence the term overrelaxation). The succession of approximations resembles
a time-dependent solution for a system with damping, relaxing to its lowest energy state. The
elastic sheet analog (described in Section 4.3) is a good example of this interpretation. Figure 4.9
shows intermediate solutions for a one-dimensional mesh with 20 points and withω = 1.00.
Information on the boundary with elevated potential propagates through the mesh.

The method of successive overrelaxation is quite slow for large numbers of points. The number
of calculations on ann x nmesh is proportional ton2. Furthermore, the number of iterations
necessary to propagate errors out of the mesh is proportional to n. The calculation time increases
as n3 . A BASIC algorithm to relax internal points in a 40 x 48 point array is listed in Table 4.1.
Corrections are made continuously during the sweep. Sweeps are first carried out along thex
direction and then along they direction to allow propagation of errors in both directions. The
electrostatic field distribution in Figure 4.10 was calculated by a relaxation program.

Advanced methods for solving the Laplace equation generally use more efficient algorithms
based on Fourier transforms. Most available codes to solve electrostatic problems utilize a more
complex mesh. The mesh may have a rectangular or even triangular divisions to allow a close
match to curved boundary surfaces.
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Boundary conditions present special problems and must be handled differently from internal points
representing the vacuum region. Boundary points may include those on the actual boundary of the
calculational mesh, or points on internal electrodes maintained at a constant potential. The latter
points are handled easily. They are marked by a flag to indicate locations of nonvariable potential.
The relaxation calculation is not performed at such points. Locations on the mesh boundary have
no neighbors outside the mesh, so that Eq. (4.16) can not be applied. If these points have constant
potential, there is no problem since the residual need not be computed. Constant-potential points
constitute a Dirichlet boundary condition.

The other commonly encountered boundary specification is the Neumann condition in which the
normal derivative of the potential at the boundary is specified. In most cases where the Neumann
condition is used, the derivative is zero, so that there is no component of the electric field normal
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R(0,j) � ¼ [Φ(0,j�1) � 2Φ(1,j) � Φ(0,j�1)] � Φ(0,j). (4.18)

1
r

�

�r
r
�φ

�r
�

�
2φ

�z2
� 0. (4.19)

to the boundary. This condition applies to boundaries with special symmetry, such as the axis in a
cylindrical calculation or a symmetry plane of a periodic system. Residues can be calculated at
Neumann boundaries since the potential outside the mesh is equal to the potential at the first point
inside the mesh. For example, on the boundaryi = 0 , the conditionΦ(-1, j) = Φ(+1, j) holds. The
residual is

Two-dimensional systems with cylindrical symmetry are often encountered in accelerator
applications. Potential is a function of (r, z), with no azimuthal dependence. The Laplace equation
for a cylindrical system is

The finite difference form for the Laplace equation for this case is
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Φ(i,j) �
1
4

(i�½)Φ(i�1,j)
i

�

(i�½)Φ(i�1,j)
i

� Φ(i,j�1) � Φ(i,j�1) . (4.20)

where r = i∆ and z = j∆.
Figure 4.10 shows results for a relaxation calculation of an electrostatic immersion lens. It

consists of two cylinders at different potentials separated by a gap. Points of constant potential
and Neumann boundary conditions are indicated. Also shown is the finite difference
approximation for the potential variation along the axis, 0(0, z). This data can be used to
determine the focal properties of the lens (Chapter 6).

4.3 ANALOG METHODS TO SOLVE THE LAPLACE EQUATION

Analog methods were used extensively to solve electrostatic field problems before the advent of
digital computers. We will consider two analog techniques that clarify the nature of the Laplace
equation. The approach relies on finding a physical system that obeys the Laplace equation but
that allows easy measurements of a characteristic quantity (the analog of the potential).

One system, the tensioned elastic sheet, is suitable for two-dimensional problems (symmetry
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F[(i�½)∆] � T [H(i∆,j∆)�H([i�1]∆,j∆)]/∆,

F[(i�½)∆] � T [H([i�1]∆,j∆)�H(i∆,j∆)]/∆.

F[(i�½)∆] � �F[(i�½)∆],

F[(j�½)∆] � �F[(j�½)∆].

�
2H(x,y)/�x2

� �
2H(x,y)/�y2

� 0.

along the z axis). As shown in Figure 4.11, a latex sheet is stretched with uniform tension on a
frame. If the sheet is displaced vertically a distanceH(x, y), there will be vertical restoring forces.
In equilibrium, there is vertical force balance ateach point. The equation of force balance can be
determined from the finite difference approximation defined in Figure 4.11. In terms of the surface
tension, the forces to the left and right of the point (i∆, j∆) are

Similar expressions can be determined for they direction. The height of the point (i∆, j∆) is
constant in time; therefore,

and

Substituting for the forces shows that the height of a point on a square mesh is the average of its
four nearest neighbors. Thus, inverting the arguments of Section 4.2,H(x, y) is described by the
two-dimensional Laplace equation
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E � ρ j

Height is the analog of potential. To make an elastic potential solution, parts are cut to the
shape of the electrodes. They are fastened to the frame to displace the elastic sheet up or down a
distance proportional to the electrode potential. These pieces determine equipotential surfaces.
The frame is theground plane.

An interesting feature of the elastic sheet analog is that it can also be used to determine orbits of
charged particles in applied electrostatic fields. Neglecting rotation, the total energy of a ball
bearing on the elastic sheet isE = T + mgh(x, y), where g is the gravitational constant. The
transverse forces acting on a ball bearing on the elastic sheet are Fx = �H/�x and Fy = �H/�y.
Thus, ball bearings on the elastic sheet follow the same orbits as charged particles in the
analogous electrostatic potential, although over a considerably longer time scale.

Figure 4.12 is a photograph of a model that demonstrates the potentials in a planar electron
extraction gap with a coarse grid anode made of parallel wires. The source of the facet lens effect
associated with extraction grids (Section 6.5) is apparent.

A second analog technique, the electrolytic tank, permits accurate measurements of potential
distributions. The method is based on the flow of current in a liquid medium of constant-volume
resistivity,ρ (measured in units of ohm-meters). A dilute solution of copper sulfate in water is a
common medium. A model of the electrode structure is constructed to scale from copper sheet
and immersed in the solution. Alternating current voltages with magnitude proportional to those
in the actual system are applied to the electrodes.

According to the definition of volume resistivity, the current density is proportional to the
electric field

Figure 4.12 Elastic sheet analog for electrostatic potential near an extraction grid. Elevated
section represents a high-voltage electrode surrounded by a grounded enclosure. Note the
distortion of the potential near the grid wires that results in focusing of extracted particles.
(Photograph and model by the author. Latex courtesy of the Hygenic Corporation.)
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j � ��φ/ρ. (4.21)

��j � 0. (4.22)

or

The steady-state condition that charge at any point in the liquid is a constant implies that all
current that flows into a volume element must flow out. This condition can be written

Combining Eq. (4.21) with (4.22), we find that potential in the electrolytic solution obeys the
Laplace equation.

In contrast to the potential in the real system, the potential in the electrolytic analog is
maintained by a real current flow. Thus, energy is available for electrical measurements. A
high-impedance probe can be inserted into the solution without seriously perturbing the fields.
Although the electrolytic method could be applied to three-dimensional problems, in practice it is
usually limited to two-dimensional simulations because oflimitations on insertion of a probe. A
typical setup is shown in Figure 4.13. Following the arguments given above, it is easy to show
that a tipped tank can be used to solve for potentials in cylindrically symmetric systems.

4.4 ELECTROSTATIC QUADRUPOLE FIELD

Although numerical calculations are often necessary to determine electric and magnetic fields in
accelerators, analytic calculations have advantages when they are tractable. Analytic solutions
show general features and scaling relationships. The field expressions can be substituted into
equations of motion to yield particle orbit expressions in closed form. Electrostatic solutions for a
wide variety of electrode geometries have been derived. In this section. we will examine the
quadrupole field, a field configuration used in all high-energy transport systems. We will
concentrate on the electrostatic quadrupole; the magnetic equivalent will be discussed in Chapter



Steady State Electric and Magnetic Fields

62

Ex � �kx � Eox/a, (4.23)

Ey � �ky � �Eoy/a. (4.24)

�φ/�x � �Eox/a, �φ/�y � �Eoy/a,

φ � �Eox
2/2a � f(y) � C, φ � �Eoy

2/2a � g(x) � C �.

φ(x,y) � (Eo/2a) (y2
� x2). (4.25)

φ(x,y)
Eoa/2

�

y
a

2

�

x
a

2

. (4.26)

5.
The most effective procedure to determine electrodes to generate quadrupole fields is to work

in reverse, starting with the desired electric field distribution and calculating the associated
potential function. The equipotential lines determine a set of electrode surfaces and potentials that
generate the field. We assume the following two-dimensional fields:

It is straightforward to verify that both the divergence and curl ofE are zero. The fields of Eqs.
(4.23) and (4.24) represent a valid solution to the Maxwell equations in a vacuum region. The
electric fields are zero at the axis and increase (or decrease) linearly with distance from the axis.
The potential is related to the electric field by

Integrating the partial differential equations

Takingφ(0, 0) = 0, both expressions are satisfied if

This can be rewritten in a more convenient, dimensionless form:

Equipotential surfaces are hyperbolas in all four quadrants. There is an infinite set of electrodes
that will generate the fields of Eqs. (4.23) and (4.24). The usual choice is symmetric electrodes on
the equipotential linesφo = ±E oa/2. Electrodes, field lines, and equipotential surfaces are plotted
in Figure 4.14. The quantitya is the minimum distance from the axis to the electrode, and Eo is
the electric field on the electrode surface at the position closest to the origin. The equipotentials in
Figure 4.14 extend to infinity. In practice, focusing fields are needed only near the axis. These
fields are not greatly affected by terminating the electrodes at distances a few times a from
the axis.
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��E � (ρ1 � ρ2 � ρ3)/εo. (4.27)

E � E1(applied) � E2(dielectric) � E3(spacecharge). (4.28)

4.5 STATIC ELECTRIC FIELDS WITH SPACE CHARGE

Space chargeis charge density present in the region in which an electric field is to be calculated.
Clearly, space charge is not included in the Laplace equation, which describes potential arising
from charges on external electrodes. In accelerator applications, space charge is identified with
the charge of the beam; it must be included in calculations of fields internal to the beam. Although
we will not deal with beam self-fields in this book, it is useful to perform at least one space charge
calculation. It gives insight into the organization of various types of charge to derive electrostatic
solutions. Furthermore, we will derive a useful formula to estimate when beam charge can be
neglected.

Charge density can be conveniently divided into three groups: (1) applied, (2) dielectric, and (3)
space charge. Equation 3.13 can be rewritten

The quantityρ1 is the charge induced on the surfaces of conducting electrodes by the application
of voltages. The second charge density represents charges indielectric materials. Electrons in
dielectric materials cannot move freely. They are bound to a positive charge and can be displaced
only a small distance. The dielectric charge density can influence fields in and near the material.
Electrostatic calculations with the inclusion ofρ2 are discussed in Chapter 5. The final charge
density,ρ3, represents space charge, or free charge in the region of the calculation. This usually
includes the charge density of the beam. Other particles may contribute toρ3, such as low-energy
electrons in a neutralized ion beam.

Electric fields have the property of superposition. Given fields corresponding to two or more
charge distributions, then the total electric field is the vector sum of the individual fields if the
charge distributions do not perturb one another. For instance, we could calculate electric fields
individually for each of the charge components,El, E2, andE3. The total field is

Only the third component occurs in the example of Figure 4.15. The cylinder with uniform charge
density is a commonly encountered approximation for beam space charge. The charge density is
constant,ρo, from r = 0 to r = rb. There is no variation in the axial (z) or azimuthal (θ) directions
so that�/�z = �/�θ = 0. The divergence equation (3.13) implies that there is only a radial
component of electric field. Because all field lines radiate straight outward (or inward forρo < 0),
there can be no curl, and Eq. (3.11) is automatically satisfied.
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1
r

d(rEr)

dr
�

ρo

εo

. (4.29)

Er(r < rb) �
ρor

2εo

. (4.30)

Er(r > rb) �
ρor

2
b

2εor
. (4.31)

Inside the charge cylinder, the electric field is determined by

Electric field lines are generated by the charge inside a volume. The size of the radial volume
element goes to zero near the origin. Since no field lines can emerge from the axis, the condition
Er(r = 0) = 0 must hold. The solution of Eq. (4.29) is

Outside the cylinder, the field is the solution of Eq. (4.29) with the right-hand side equal to zero.
The electric field must be a continuous function of radius in the absence of a charge layer. (A
charge layer is a finite quantity of charge in a layer'of zero thickness; this is approximately the
condition on the surface of an electrode.) Thus, Er(r = rb

+) = Er(r = rb
-), so that

The solution is plotted in Figure 4,16. The electric field increases linearly away from the axis in
the charge region. It decreases as1/r for r > r b because the field lines are distributed over a larger
area.

The problem of the charge cylinder can also be solved through the electrostatic potential. The
Poisson equation results when the gradient of, the potential is substituted in Eq. (3.13):
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�
2φ � �

ρ(x)
εo

, (4.32)

1
r

d
dr

r
dφ
dr

� �

ρo

εo

. (4.33)

φ(r < rb) � �

ρor
2

4εo

, (4.34)

φ(r > rb) � �

ρor
2
b

4εo

2 ln
r
rb

� 1 . (4.35)

�6Φ(i,j,k) � Φ(i�1,j,k) � Φ(i�1,j,k) � Φ(i,j�1,k)

� Φ(i,j�1,k) � Φ(i,j,k�1) � Φ(i,j,k�1) � �ρ(x,y,z)∆3/∆εo.
(4.36)

or

The solution to the Poisson equation for the charge cylinder is

The potential is also plotted in Figure 4.16.
The Poisson equation can be solved by numerical methods developed in Section 4.2. If the finite

difference approximation to�2φ [Eq. (4.14)] is substituted in the Poisson equation in Cartesian
coordinates (4.32) and both sides are multiplied by∆2, the following equation results:
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Φ(i,j,k) � 1/6 [Φ(i�1,j,k) � Φ(i�1,j,k) � Φ(i,j�1,k)

� Φ(i,j�1,k) � Φ(i,j,k�1) � Φ(i,j,k�1)] � Q(i,j,k)/6εo.
(4.37)

R(i,j,) � 1/4 [Φ(i�1,j) � Φ(i�1,j) � Φ(i,j�1) � Φ(i,j�1)]

� Φ(i,j) � Q(i,j)/4εo .
(4.38)

� B�dl � µo �� jzdA � µoI. (4.39)

B
θ
� µoI/2πr. (4.40)

The factorρ∆3 is approximately the total charge in a volume∆3 surrounding the mesh point(i, j,k)
when (1) the charge density is a smooth function of position and (2) the distance∆ is small
compared to the scale length for variations inρ. Equation (4.36) can be converted to a finite
difference equation by defining Q(i, j, k) =ρ(x, y, z)∆3. Equation (4.36) becomes

Equation (4.37) states that the potential at a point is the average of 'its nearest neighbors elevated
(or lowered) by a term proportional to the space charge surrounding the point.

The method of successive relaxation can easily be modified to treat problems with space charge.
In this case, the residual [Eq. (4.16)] for a two-dimensional problem is

4.6 MAGNETIC FIELDS IN SIMPLE GEOMETRIES

This section illustrates some methods to find static magnetic fields by direct use of the Maxwell
equations [(4.3) and (4.4)]. The fields are produced by current-carrying wires. Two simple, but
often encountered, geometries are included: the field outside a long straight wire and the field
inside of solenoidal winding of infinite extent.

The wire (Fig. 4.17) has currentI in thez direction. There are no radial magnetic field lines
since��B = 0. There is no component Bz since the fields must be perpendicular to the current.
Thus, magnetic field lines are azimuthal. By symmetry, the field lines are circles. The magnitude of
the azimuthal field (or density of lines) can be determined by rewriting the static form of Eq.
(3.12) in integral form according to the Stokes law [Eq. (4.7)],

Using the fact that field lines are circles, we find that
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1
r

�(rBr)

�r
�

�Bz

�z
� 0,

�Br

�z
�

�Bz

�r
� 0. (4.41)

Bo � µo J � µo (N/L) I. (4.42)

The solenoidal coil is illustrated in Figure 4.18. It consists of a helical winding of insulated wire
on a cylindrical mandrel. The wire carries currentI. The quantity(N/L) is the number of turns per
unit length.Solenoidderives from the Greek word for pipe; magnetic field lines are channeled
through the windings. In a finite length winding, the field lines return around the outside. We will
consider the case of an infinitely long structure with no axial variations. Furthermore, we assume
there are many windings over a length comparable to the coil radius, or (N/L)rc » 1. In this limit,
we can replace the individual windings with a uniform azimuthal current sheet. The sheet has a
current per unit lengthJ (A/m) = (N/L)I.

The current that produces the field is azimuthal. By the law of Biot and Savart, there can be no
component of azimuthal magnetic field. By symmetry, there can be no axial variation of field. The
conditions of zero divergence and curl of the magnetic field inside the winding are written

Setting�/�z equal to zero in Eqs. (4.41); we find thatBr is zero and thatBz has equal magnitude
at all radii. The magnitude of the axial field can be determined by applying Eq. (4.39) to the loop
illustrated in Figure 4.18. The field outside a long solenoid is negligible since return magnetic flux
is spread over a large area. There are no contributions to the loop integral from the radial
segments because fields are axial. The only component of the integral comes from the part of the
path inside the solenoid, so that

Many magnetic confinement systems for intense electron beams or for high-temperature plasmas
are based on a solenoidal coil bent in a circle and connected, as shown in Figure 4.19. The
geometry is that of a doughnut ortoruswith circular cross section. The axial fields that circulate
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around the torus are calledtoroidal field lines. Field lines are continuous and self-connected. All
field lines are contained within the winding. The toroidal field magnitude inside the winding is not
uniform. Modification of the loop construction of Figure 4.19 shows that the field varies as the
inverse of the major radius. Toroidal field variation is small when the minor radius (the radius of
the solenoidal windings) is much less than the major radius.
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Bx � �Az/�y, By � ��Az/�x. (4.43)

dAz � 0 � (�Az/�x) dx � (�Az/�y) dy. (4.44)

4.7 MAGNETIC POTENTIALS

The magnetic potential and the vector potential aid in the calculation of magnetic fields. In this
section, we will consider how these functions are related and investigate the physical meaning of
the vector potential in a two-dimensional geometry. The vector potential will be used to derive
the magnetic field for a circular current loop. Assemblies of loop currents are used to generate
magnetic fields in many particle beam transport devices.

In certain geometries, magnetic field lines and the vector potential are closely related. Figure
4.20 illustrates lines of constant vector potential in an axially uniform system in which fields are
generated by currents in thez direction. Equation (3.24) implies that the vector potential has only
an axial component,Az. Equation (3.23) implies that

Figure 4.20 shows a surface of constantAz in the geometry considered. This line is defined by
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dy/dx � By/Bx. (4.45)

Bx � �Um/�x, By � �Um/�y. (4.46)

dUm � (�Um/�x) dx � (�Um/�y) dy � Bxdx � Bydy.

dy/dx � �By/Bx. (4.47)

Az � ±½µoI ln(x �2
�y �2)/2π.

Az �
µoI

4π
ln

(x�d)2
�y2

(x�d)2
�y2

.

Substituting Eqs. (4.43) into Eq. (4.44), an alternate equation for a constantAz line is

Equation (4.45) is also the equation for a magnetic field line. To summarize, when magnetic fields
are generated by axial currents uniform inz, magnetic field lines are defined by lines of constant
Az.

A similar construction shows that magnetic field lines are normal to surfaces of constant
magnetic potential. In the geometry of Figure 4.20,

by the definition ofUm. The equation for a line of constantUm is

Lines of constant magnetic potential are described by the equation

Analytic geometry shows that the line described by Eq. (4.47) is perpendicular to that of Eq.
(4.45).

The correspondence of field lines and lines of constantAz can be used to find magnetic fields of
arrays of currents. As an example, consider the geometry illustrated in Figure 4.21. Two infinite
length wires carrying opposed currents±I are separated by a distance2d. It is not difficult to
show that the vector potential for a single wire is

where the origin of the coordinate system(x', y') is centered on the wire. The total vector
potential is the sum of contributions from both wires. In terms of the coordinate system(x, y)
defined in Figure 4.21, the total vector potential is

Lines of constantAz (corresponding to magnetic field tines) are plotted in Figure 4.21.
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j
θ
� I δ(z�) δ(r �

�a). (4.48)

There are many instances in accelerator applications in which magnetic fields are produced by
azimuthal currents in cylindrically symmetric systems. For instance, the field of a solenoidal lens
(Section 6.7) is generated by axicentered current loops of various radii. There is only one nonzero
component of the vector potential,A

θ
. It can be shown that magnetic field lines follow surfaces of

constant2πrA
θ
. The function 2πrA

θ
is called thestream function. The contribution from many

loops can be summed to find a net stream function.
The vector potential of a current loop of radiusa (Fig. 4.22) can be found by application of Eq.

(3.24). In terms of cylindrical coordinates centered at the loop axis, the current density is

Care must be exercised in evaluating the integrals, since Eq. (3.24) holds only for a Cartesian
coordinate system. The result is
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A
θ
�

µoIa

4π �

2π

0

cosθ�dθ�

(a 2
� r 2

� z2
� 2ar cosθ�)½

. (4.49)

M � 4ar/(a 2
� r 2

� z2
� 2ar),

A
θ
�

µoIa

π (a 2
� r 2

� z2
� 2ar)½

(2�M) K(M) � 2 E(M)
M

. (4.50)

Defining the quantity

Eq. (4.49) can be written in terms of the complete elliptic integrals E(M) and K(M) as

Although the expressions in Eq. (4.50) are relatively complex, the vector potential can be
calculated quickly on a computer. Evaluating the elliptic integrals directly is usually ineffective
and time consuming. A better approach is to utilize empirical series tabulated in many
mathematical handbook s. These series give an accurate approximation in terms of power series
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K(M) � 1.38629� 0.111972(1�M) � 0.0725296(1�M)2

� [0.50000� 0.121348(1�M) � 0.0288729(1�M)2)] ln(1/(1�M)l
(4.51)

E(M) � 1�0.463015(1�M) � 0.107781(1�M)2

� [0.245273(1�M) � 0.0412496(1�M)2] ln[1/(1�M)].
(4.52)

Bz �
1
r

�(rA
θ
)

�r
, Br � �

�A
θ

�z
. (4.53)

A
θ
(r,z) �

µoIa

4π �

2π

0

cosθ� dθ�

a 2
�z2

�

arcos2θ� dθ�

a 2
�z2 3

. (4.54)

A
θ
�

µoIa
2r

4 a 2
�z2 3

. (4.55)

Bz(0,z) �
µoIa

2

2 a 2
�z2 3

. (4.56)

and elementary transcendental functions. For example, the elliptic integrals are given to an
accuracy of 4 x 10-5 by [adapted from M. Abramowitz and I. A. Stegun, Eds.,Handbook of
Mathematical Functions (Dover, New York, 1970), p. 591].

(4.52)

The vector potential can be calculated for multiple coils bv transforming coordinates and then
summingA

θ
. The transformations arez�(z - zcn) anda � rcn, wherezcn andrcn are the coordinates

of thenth coil. Given the net vector potential, the magnetic fields are

A quantity of particular interest for paraxial orbit calculations (Section 7.5) is the longitudinal
field magnitude on the axisBz(0, z). The vector potential for a single coil [Eq. (4.49)] can be
expanded for r « a as

The integral of the first term is zero, while the second term gives

Applying Eq. (4.53), the axial field is
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Bz(0,z) � (B1�B2) � (�B1/�z � �B2/�z) z

� (�2B1/�z2
� �

2B2/�z2) z2
�...

Bz � µoI / (1.25)3/2 a (4.57)

We can use Eq. (4.56) to derive the geometry of the Helmholtz coil configuration. Assume that
two loops with equal current are separated by an axial distanced. A Taylor expansion of the axial
field near the axis about the midpoint of the coils gives

The subscript1 refers to the contribution from the coil atz = - d/2, while 2 is associated with the
coil at z = + d/2. The derivatives can be determined from Eq. (4.56). The zero-order components
from both coils add. The first derivatives cancel at all values of the coil spacing. At a spacing ofd
= a, the second derivatives also cancel. Thus, field variations near the symmetry point are only on
the order of(z/a)3 . Two coils withd = a are called Helmholtz coils. They are used when a weak
but accurate axial field is required over a region that is small compared to the dimension of the
coil. The field magnitude for Helmholtz coils is


