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PARTIAL PRESSURE MEASUREMENT
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University of Liverpool, Liverpool, UK

Abstract
The quadrupole mass spectrometer is now well established as the instrument
used almost universally for partial pressure measurement.  This
spectrometer can be considered as a hot-cathode extractor ionisation gauge
with the addition of an electrostatic mass filter between the ion source and
the ion collector.  This filter consists of a square array of circular rods
approximately 6 mm diameter and between 100 to 150-mm long.  Positi ve
ions are injected parallel to the central axis towards the ion collector.  A
filtering action is achieved by applying combined radio frequency and dc
potentials between opposite pairs of rods.  The characteristics of the filter
can be controlled by small changes in the relative values of the radio
frequency and dc voltages and the mass range by changes in the frequency
of the ac signal.  Care must always be taken when operating this mass
spectrometer in an analytical mode because of non-linearities caused by
space charge and other effects which are important, particularly in the
injection region between the ion source and filter.  Also the filter is subject
to loss of sensiti vity over the long term, generally caused by contamination
from hydrocarbon impurities in the vacuum system.  This is not normally a
problem in ultra-high vacuum operation.  Although almost all filters have
been designed to operate with relatively low voltages applied to the rods,
alternative modes are being considered which require distinctly high
voltages or lower frequencies.  There are hopes that these will have
advantages for general operation.

1. INTRODUCTION

There are a number of different types of mass filter — mass spectrometer — that have been
considered for the analysis of the gases found in vacuum systems.  All are based upon the hot cathode
ionisation gauge, with the addition of some form of mass filter placed between the ionisation chamber
and the ion collector.  The pressure range to be considered is from approximately 10-4 mb down to
ultra-high-vacuum.  The four instruments that have been responsible for the major share of the
development are:

• The magnetic deflection mass spectrometer
• The Omegatron
• The time-of-f light mass spectrometer
• The quadrupole mass filter
 

All have the advantages and disadvantages of hot-cathode devices (e.g. problems due to
filament outgassing) and all operate over roughly the same pressure range.

Not surprisingly the magnetic deflection mass spectrometer, because of the general interest in
its performance, was the first instrument to be used.  Developments were particularly significant
during the period 1940 to 1960.  Figure 1 ill ustrates the principles of operation of the 1800 deflection
instrument.  The positi ve ions generated in the electron stream are formed into a “ribbon-like” beam
and ejected into the magnetic field through a narrow slit i n the base of the ionisation chamber.  In this
field, usually generated by a permanent magnet, they are bent in circular paths through 1800 towards
the defining slit i n the collector plate.  The radius of curvature of paths (R) depends upon (i) the
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strength of the magnetic field, (ii ) the charge to mass ratio of the ions and (iii ) the energy of the ions.
For ions of a given charge-to-mass ratio the radius of curvature is directly proportional to the square
root of their kinetic energy and inversely proportional to the magnetic field strength.  As ill ustrated in
Fig. 1, some ions will have a radius exactly equal to R0 and reach the collector plate through the
collector defining slit .  The “heavier” and “ lighter” ions have respectively radii greater or less than R0

and, hence, fail to reach the collector.  The various components of the ion beam can be scanned across
the collector defining slit by varying the kinetic energy of the ions (i.e. by controlli ng the bias voltage
V of the ion source).

Fig. 1  1800  deflection magnetic mass spectrometer. Fig. 2  Typical spectrum for magnetic deflection mass
spectrometer showing iso-butane with a small i mpurity of
water vapour and air [1].

Figure 2 depicts a typical spectrum for this instrument.  In this diagram the ion current to the
collector is plotted as a function of the source bias voltage (i.e. the kinetic energy of the ions).  It will
be noticed that this method of scanning results in a non-linear display; the value of V being very low
for ions of high charge-to-mass ratio.  In fact a useful output is obtained with V kept constant and
scanning effected by varying the magnetic field strength.  Unfortunately the electro-magnets required
to generate variable magnetic fields tend to be both bulky and unrealistically expensive for general
vacuum use.

An alternative to the magnetic deflection spectrometer is the Omegatron which, unfortunately
after extensive development showing promise, has not found significant practical applications.  The
electrodes of this analyser form a small cube with insulated plates at top and bottom across which a
radio frequency potential difference can be applied.  This is ill ustrated in Fig. 3.  Positi ve ions formed
in the central electron beam are forced, by the strong magnetic field parallel to this axis, to travel in
circular paths, as indicated in Fig. 3.  The time of revolution T in the magnetic field is given by
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with the usual notation.  It is significant that this time is dependent upon the magnetic field strength
and the mass of the ions, but not their energy.  Thus ions with one particular mass will resonate with
the field applied across the RF plates and, therefore, gain energy continuously.  The radius of
curvature of their paths will i ncrease until they strike the collector.  A complete e mass spectrum can
be obtained by varying either the magnetic field strength or the frequency of the RF signal.
Unfortunately, although this instrument is small and easily fitted to a vacuum system, it requires a
very strong magnetic field for effective operation.  Resolution is inversely proportional to mass in the
omegatron; making performance poor at the high end of the spectrum.  This does however mean that,
although not practical for general use, it could have applications where interest is confined to “ light”
ions;  resolution is certainly excellent in the range 1–4 amu.
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Fig. 3  The Omegatron [2]. Fig. 4  The time-of-f light mass spectrometer [3].

The time-of-f light mass spectrometer has the advantages of a relatively small size and, more
important, does not require any magnetic field for its operation.  The principle of operation is simple;
ions are formed as a bunch in a pulsed electron beam (say of 1µsec. duration).  They are all
accelerated through the same potential difference (therefore receiving the same kinetic energy) and
are constrained to drift in a field-free space to an ion collector, as shown in Fig. 4.  Obviously mass
separation will occur because light ions, travelli ng faster, will reach the collector before the heavy
ions.  With a sensiti ve multiplier and an ampli fier with a small time constant the arrival time of the
various ions can be measured and displayed.  This instrument gives an intermittent output signal that
limit s its value.  It also has the disadvantage of low sensiti vity and should high performance be
required a long drift tube must be used, thus negating the advantage of small size.  This has inhibited
its development for general vacuum use.

For practical operation it has been established that none of the above instruments, with the
possible exception of the magnetic deflection mass spectrometers, can mount a serious challenge to
the quadrupole mass filter which is now used almost universally in general vacuum application.

2. THE QUADRUPOLE MASS FILTER

In its simplest form this filter (or analyser) can be considered as a conventional extractor ionisation
gauge with an electrostatic mass filter interposed between the ion source and the ion collector.  The
filter takes the form of four parallel rods of circular, or near circular, cross-section mounted
symmetrically about a central axis.  In a typical instrument for general vacuum use these rods are
between 5 and 10-mm diameter and 50 to 150-mm long.  Precision in mounting the rods is most
important.  Opposite rods in the assembly are connected together electrically, the structure being
shown schematically in Fig. 5. Ideally the rods must have the hyperbolic profiles ill ustrated in Figs.
6a and 6b.  Practical experience has shown that the actual field is suff iciently close to hyperbolic
when circular rods are substituted for those shown in Fig. 6a, provided the radius r of the rods is
chosen to be such that r = 1.147r0, r0 being the inscribed radius shown in Fig. 6b.  With a suitable
electrical potential applied between the two pairs of rods a filtering action takes place for ions injected
from the source along the central axis of this symmetrical structure.  The electric field (in the plane at
right angles to the z axis of Fig. 6a)  must be hyperbolic in order to obtain the best filtering action.

Fig. 5  The quadrupole mass spectrometer.
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(a) (b)
Fig. 6  Rod assembly in quadruple filter. (a) Showing electrical connections. (b) Defining  inscribed radius.

In order to obtain the filtering action an RF voltage superimposed upon a dc voltage must be
applied between the two pairs of rods, i.e. a voltage U + V sin ωωt must be applied between terminals
A and B in Fig. 6a.  Theory indicates that U, V and ω can be chosen such that, whilst the majority of
ions will be unstable in the x or y directions (or both), a small fraction may be stable in both x and y
directions and therefore travel the full l ength of the filter (z direction in Fig. 6a) to reach the collector.
The criteria for determining stabilit y  can be obtained from the diagram presented in Fig. 7.  This
maps out the boundaries of stabilit y/instabilit y for what is in effect the (U V) plane.  Because the
stabilit y criteria depends upon M, ω and r0 as well as U V, Fig. 7 is presented in terms of the more
general co-ordinates a and q which are defined as follows:
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If a point plotted in Fig. 7 for particular values of a and q lies inside the triangle then the ion
paths are stable; if a point lies outside the triangle then the paths are unstable.  It has to be pointed out
that the boundaries of the triangle in Fig. 7 are strictly speaking only correct for very long filters; as
basic theory only concerns itself with ions that have exposure to virtually an infinite number of cycles
of the RF field.  However, Fig. 7 is a suff iciently good approximation provided the ions are subject to
more than about 100 cycles of the RF voltage in the filter.

Fig. 7  The first stabilit y zone. Fig. 8  Stabilit y diagram plotted for singly charged ions of
mass 4, 18, 27, 28, & 29 amu [4].
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Fig. 9  Mass spectra obtained at both low and high resolution.
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The significance of the  “stabilit y triangle” is ill ustrated clearly in Fig. 8.  In this figure
triangles are drawn in terms of U and V (for fixed values of ω and r0) for five different values of ion
mass M (singly charged ions with mass 4, 18, 27, 28 & 29 a.m.u).  These five triangles are computed
for an ac frequency of 2 MHz and a rod radius of 3.25 mm.  A family of similar triangles is obtained
with the tips of the triangles all l ying in a straight line that passes through the origin.  Obviously mass
spectra can be obtained if the applied voltage is increased from zero to a high value, keeping the ratio
of U/V constant.  Two such “scan lines” are shown in Fig. 8.  Obviously by increasing the slope of
this line an increase in resolution will be obtained.  Corresponding experimental results are given in
Figs. 9a and 9b.  These two diagrams show clearly how the resolution increases significantly for only
a 2% change in the slope of the scan line (i.e. an increase in U at mass 40 amu from 107 to 108.8).
The abilit y to control resolution by a simple adjustment of the electrical parameters is an important
advantage of the quadrupole over the magnetic deflection instruments.  (In the magnetic instruments
resolution can only be changed by physically altering the defining slit widths at source and collector).
A further advantage — not immediately obvious — is the requirement of the quadrupole for increased
applied voltage levels at the highest masses.  This means that, unlike the magnetic deflection
spectrometers and the omegatron, the quadrupole is least sensiti ve to electrode surface contamination
at the high mass end of the scale.  This is a positi ve advantage because usually it is at the highest
masses where the highest precision is required.

There is good agreement between the experimentally measured performance, as typified by the
data presented in Fig. 9, and the theoretical predictions of Figs. 7 and 8.  This is true in spite of the
small , but numerous, approximations in the mathematical model.  For example, as already noted, the
ions are subject to only a finite number of cycles of RF field.  Also the fact that the ions have to travel
through fringing fields to enter and exit the filter is completely ignored in the basic theory.  It is also
true that there must be some deviations from a true hyperbolic field because (i) the electrode surfaces
are almost always circular in section rather than hyperbolic, (ii ) there must be some errors in
mounting the rod assembly and  (iii ) there will occasionally be some spurious electrical charge due to
insulating layers building up on the electrode surfaces.

Fig. 10  Experimental results showing relation between
sensitivity and resolution for different values of N the
number of cycles the ions spend in the filter (the values of N
are marked on each curve).

Fig.11  Relation between maximum resolution and the
number of cycles the ions spend in the lens.
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From data obtained in experiments of the type depicted in Figs. 9a and 9b families of curves,
such as that shown in Fig. 10, can be built up.  These demonstrate how sensiti vity and resolution
depend very much upon N, the number of cycles of RF which the ions “experience” in the filter.  In
Fig. 10 the number of cycles N is indicated on each curve; thus in this particular filter maximum
resolution attainable increases from about 50 to 200 when N is increased from 32 to 88 cycles.
Resolution is defined here, and throughout the paper, by the ratio M/δM where δM is the peak width
at 10% of the peak height.  This is conventional.

Figure 11 obtained from many families of curves similar to those in Fig. 10 shows the simple
relationship between maximum resolution and number of cycles N over a range of values of ion
charge to mass ratio.  Although there is considerable scatter in the experimental points (bearing in
mind that this is a log-log plot), the relationship between R and N is given by R = N n where n is close
to 2.

3. THE DESIGN OF PRACTICAL QUADRUPOLE FILTERS

The requirements for optimisation of the four important parameters are as follows:

Increase Resolution:
1. Increase length of f ilter
2. Increase frequency of RF
3. Decrease ion injection energy

Decrease cost
1. Decrease frequency of RF
2. Decrease length of f ilter

Increase sensitivity
1. Increase ion injection energy
2. Introduce a multiplier at the collector
3. Increase electron current

Increase mass range
1. Reduce frequency
2. Increase the ac and dc voltages

Unfortunately there are serious clashes in the requirements, which means that compromises are
necessary in virtually all designs.  For example a decision to increase the resolution of a given filter
by increasing either its length or the frequency of the RF supply incurs a cost penalty.  The
manufacture of a long filter is obviously more expensive than a short filter (also it can be less
convenient to attach to a vacuum system).  An increase in RF frequency leads to an increased
requirement from the ac and dc voltages (U and V).  This means more expensive and larger power
supplies.  Increasing resolution by reducing the speed with which the ions travel through the filter in
the z direction (i.e. by reducing their injection energy) appears attractive but, unfortunately, a lower
sensiti vity must be accepted.  This might be compensated by introducing an electron multiplier into
the collector assembly as shown in Fig. 12.  Again there is a cost penalty.

Stabilit y of performance over a long period, a factor of considerable practical importance, is
diff icult to quantify.  It is well established that stabilit y depends significantly upon the energy with
which the ions are injected into the filter.  Obviously changes in the performance of the instrument
with time depend criti cally upon the atmosphere in the vacuum system.  Whilst in ultra-high vacuum
systems instabilit y will probably not be a problem it can be significant even in relatively clean, but
unbaked, systems.
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Fig. 12  Channel electron multiplier connected to quadrupole exit
plate H.  A, high-voltage;  B, grounded mesh;  C, ion collector;  D,
grounded shield;  E, signal lead;  F, electron collector;  G, output
connector;   I, CEM cone;  J, high-voltage connection;  K, ground
connection;  L, bias resistor; and M, grounded  shield, [5].

Fig. 13  Observed variation in sensitivity over the
pressure range 10-7 to 10-4 mbar for a residual gas
analyser [6].

Since space charge fields, both negative and positi ve, can be more important in the mass filter
than in the ionisation gauge it is important to recognise that (i) because of the negative space charge
the sensiti vity, i.e. (output current)/(partial pressure) is not necessaril y proportional to electron current
and (ii ) because of positi ve space charge, sensiti vity is not necessaril y independent of pressure even
when mean-free-path effects can be neglected.  The magnitude of the non-linearity depends very
much upon individual instrument design.

A simple technique for measuring non-linearity in the output vs pressure characteristics is
ill ustrated in Fig.13.  This presents the data obtained from two sets of measurements obtained with a
dynamic calibration plant where two gases were introduced under controlled conditions through
separate inlet valves Ref. [6].  In one experiment a flow of argon was first introduced so as to
maintain a constant partial pressure of the order of 10-8 mb then krypton was introduced at a steadily
increasing rate, taking the total pressure in the system from below 10-7 mb to about 10-4 mb.  The
variation in the indicated partial pressure for argon demonstrates the change in sensiti vity for argon
over this pressure range 10-7 mb to 10-4 mb.  For completeness the experiment has been repeated with
the two gases reversed, i.e. krypton now becoming the trace gas.  Both sets of results indicate a
significant dip in sensiti vity at comparatively low pressures, where effects of mean free path can be
neglected.  This experiment indicates the need for caution in interpreting data from these instruments,
because the instabiliti es in the signals from the trace gas could erroneously be interpreted as a fall i n
pressure for these gases.

4. THE FOUR OPERATING ZONES FOR THE QUADRUPOLE FILTER

All references to theoretical analysis and experimental data in the above sections refer to the filter in
the “first operating zone”.  Extending the analysis from the very brief presentation above shows
clearly the existence of a number of additional stabilit y zones; which may well have practical
significance.

Meaningful theoretical analysis is based upon a solution of the Mathieu equation which defines
stabilit y in both the x and y directions.  Analysis and its interpretation is simpli fied because motion in
the x, y and z directions (x, y and z as defined in Fig. 6) is uncoupled and, therefore, the ion motion in
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these three directions including the conditions for stabilit y can be considered independently.  Further
the z direction can be discounted as the electric field in this direction is, in theory, always zero.  Thus
from the analysis point of view this filter presents a two dimensional problem, with displacements as
a function of time in the xz and yz planes being the defining factors.  Results of the analysis of the
Mathieu equation show clearly defined stabilit y zones in the aq diagram for motion in the xz and yz
planes.  These zones are shown for a relatively large range of a and q for motion in the xz plane
(Fig. 14).

Stabilit y in the yz plane is obtained by reversing the a axis, i.e. +a becoming -a and vice-versa.
Figure 15 presents the stabilit y characteristics for both the xz and yz planes superimposed in one
diagram. It shows four regions where motion is stable in both planes.  These are regions where ions
will be able to pass through the filter.  The first stabilit y region (the region depicted in Fig. 7) is the
small triangle near the central origin, diff icult to distinguish in this larger scale diagram.

Although operation in the second and higher stabilit y zones have been neglected in the past,
there is now indication of an interest in developing filters for operation in zone III of Fig. 15.

Fig. 14  Stabilit y diagram for the Mathieu equation for
either the xz or yz directions.

Fig. 15  Stabilit y shown for both xz and yz planes indicating
four regions where ions may  pass through the filter.
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