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VACUUM SYSTEMS OF ELECTRON STORAGE RINGS

D. Krämer
BESSY, Berlin, Germany

Abstract
Designers of vacuum systems of modern high intensity electron storage
rings have to carefully consider vacuum pressure effects as well as
geometrical and electromagnetic constraints. This paper reviews the basic
aspects of synchrotron radiation determining the dynamical vacuum
pressure in the presence of beam. The processes of thermal and photon
induced desorption are discussed so that a proper estimate of the gas load
can be made. The relevant vacuum dependent loss mechanisms are
summarised in order to calculate the beam-gas li fetime. Implicit geometrical
aspects in the context of machine impedance are mentioned as they have a
strong influence on beam stabilit y.

1. INTRODUCTION

Beam lifetime and beam stabilit y are of major importance to any storage ring and require a careful
design of the vacuum system. The interaction of the stored particles with the molecules of the residual
gas leads to particle losses, thus calculating the pressure to be expected is essential at the design stage.

The gas load and thus the resulting vacuum pressure is determined by thermal desorption and
moreover by the dynamical gas load which is produced by synchrotron radiation falli ng on the
chamber walls. The interaction of beam particles with the residual gas molecules, cause particle losses
by elastic and inelastic scattering processes. The knowledge of these processes allows the beam-gas
li fetime to be calculated. Nevertheless implicit requirements such as the chambers’ impedances have
to be taken into account by the designers to avoid beam instabiliti es caused by wake fields arising
from the interaction of the beam self-f ield with the metalli c vacuum-chamber boundaries.

2. SYNCHROTRON RADIATION ASPECTS IN ELECTRON STORAGE RINGS

It has been known for about 100 years that an accelerated “electric charge concentrated in a point”
radiates energy [1]. Starting from Maxwell ’s equation of 1873, Liénard [1] and Larmor [2] worked
out the power that is emitted by a moving charged particle at non-relativistic velocities. This energy
loss of accelerated particles was of concern already at the early betatrons. [3, 4], but it took until 1947
until Elder and co-workers [5] saw a “small spot of brilli ant white light” in the visible spectrum,
radiated from the 70 MeV electron beam of their synchrotron. That’s why this electromagnetic
radiation is still called “Synchrotron Radiation” (SR).

Since the energy and the stored intensities of electron beams in storage rings have been raised
to much higher values, SR has an enormous impact on the design of electron-ring accelerators. The
power of the SR beams that hit the vacuum chamber in modern storage-ring-based synchrotron
radiation light sources or B-meson factories can be as high as kW⋅m-1 causing thermal problems as
well as severe desorption.

2.1 Basic properties of synchrotron radiation

Amongst earlier articles, Schwinger published the theory of synchrotron radiation in 1949 [6]. A more
modern derivation of the theory is found in Ref. [7], where an analytical expression of the spectral
and angular distribution of SR is given in terms of modified Bessel-functions Kn/m. For recent review
articles with connection to accelerators see also Refs. [8, 9].
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The relativistic γ-parameter of an electron with total energy E is defined as

with c the speed of light and me = 511 keV/c2 the electron rest mass. An electron (with charge e)
moving in a circular accelerator will radiate a total energy W per solid angle dΩ per unit frequency
interval dω per turn of

where εo = 8.86⋅10-12 A⋅s⋅V -1⋅m-2 is the dielectric constant and the argument of the Bessel-function ξ is

The terms in the square bracket of Eq. (1) describe the fact that SR is linearly polarised in the
horizontal, and circularly polarised in the vertical plane. The angular divergence and thus the peak
intensity of the radiated energy are functions of frequency ω and depend on the vertical observation
angle ψ. Approximating the vertical divergence at the criti cal frequency ω = ωc by a Gaussian, the
divergence (FWHM) is α ≈ γ-1.  So already at small electron energies, e.g. 500 MeV, where γ ≅  1000,
the vertical opening angle of SR is of the order of 1 mrad. Thus SR is extremely well collimated with
a very small vertical extension.

Integrating Eq. (1) over all frequencies, the total radiated energy per unit solid angle per
electron per turn gives:

This equation indicates that SR is of concern to electron rings rather than to current hadron
machines; the γ4-dependence of Eq. (2) results in a ~10-13 smaller amount of SR power radiated by a
proton beam (at the same energy and bending radius), as the mass ratio of proton and electron mass
mp/me = 1836.

As energy is radiated in quanta (photons) with energies u = hω/2π, the distribution of the
number of photons n(u) emitted by a single electron to an unit energy interval ∆u per second is

where 
�
 is Planck’s constant and ρ the electron’s bending radius in the external magnetic field. Thus

the flux of photons emitted per second by a single electron is:

Equation (2) in practical units of beam energy E, magnetic bending field B and circulating
beam current I for the peak power density in the horizontal plane (ψ = 0) becomes

and integrated over all vertical angles the total power radiated by the beam into the horizontal plane
is:
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while from Eq. (3) the photon flux emitted into the horizontal plane is:

The power adsorbed by the vacuum chambers and the power distribution in the accelerator depends in
detail on the vacuum chamber design but is easily estimated from geometrical considerations.

Technical problems arising from too high power loads on the chamber walls are:�
 heating of the chamber walls enhancing thermal desorption;�
 thermal expansion of the chambers causing current-dependent deflection of chambers and

elements installed in the vacuum system, which may create position shifts of lattice elements and
thus intolerable beam orbit drifts;�

 photon induced desorption increasing the vacuum pressure due to a current-dependent gas load
affecting the beam lifetime.

3. LINEAR POWER DENSITY

Equations (4) and (5) are the power and photon flux that are emitted by the beam whenever electrons
are deflected in a magnetic field. In a dipole field B = constant, the beam is bent in a circle with
constant bending radius ρ. The power of SR, as well as the photon flux, are emitted tangentially to the
beam path and will hit the vacuum chamber wall . Due to the small vertical dimension of the photon
beam it is useful to define the ‘ linear power density’ plin = dP/dL as the vertically integrated power per
unit length of chamber wall , Fig. 1. Taking small differences rather than differentials, the power
radiated by the electron beam in a small angle segment ∆θ is dissipated along a distance ∆L on the
chamber walls. By this the linear power density distribution along the whole machine is:

Fig. 1  Schematic of the concept of linear power
density. The power P radiated in the angle
segment ∆θ is spread over a distance ∆L at the
vacuum system boundary. The linear power
density pl in is the power absorbed by the chamber
wall per unit length.

Fig. 2  Linear power density distribution along a unit cell of the
BESSY II synchrotron light source (1/16 of the ring
circumference). Near the exit of the bending magnets the power
density is as high as 250 W/cm. Input data: energy 1.9 GeV, stored
current 500 mA, bending field 1.45 T. The minor contribution of
multipole magnets is neglected in the calculation. The magnetic
lattice of the ring is sketched in the lower part of the graph.
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photon beam, the peak power density can be decreased by distributing the power over a larger
distance ∆L. Figure 2 shows a calculation of the linear power density for the 1.9 GeV BESSY II SR
light source. For a stored current of 500 mA the linear power density ranges from 250 W/cm near the
exit of the bending magnets to less than 1 W/cm in the straight sections. Especially at the location of
high power load, a careful analysis of the expected temperatures and thermal deflection of
components has to be done (using standard FEM programs) to avoid damage to the hardware
components.

The same concept is used to derive the linear photon flux density nlin = d(dN/dt)/⋅dL
[photons⋅s-1⋅cm-1] on the chamber walls using Eq. (5):

4. THERMAL- AND PHOTON-INDUCED DESORPTION

For a vacuum system without beam, the gas originates from a variety of processes as permeation,
diffusion, desorption/re-adsorption and the material’s vapour pressure. For electron rings it is
normally suff icient to consider the thermal desorption of molecules bound to the chamber-wall
surfaces only. In the presence of electron beams the photon-induced desorption by synchrotron
radiation gives a significant contribution to the vacuum pressure.

4.1 Thermal desorption

The surfaces of the vacuum vessels are always covered with some layers of molecules which are
adsorbed at binding energies in the range of eV. In consequence continuous gas loads Qi consisting of
gas components ‘ i’ li ke H2, CH4, H2O, CO, CO2  are desorbing, giving a total gas load Qo:

The desorption rates qi [mbar⋅l⋅s-1⋅cm-2], often also termed specific outgassing rate, are the gas
loads per surface area A: qi = Qi/A. These rates cannot be calculated by general means, as they are a
property of the material and depend on its history, e.g. the way the surfaces have been cleaned [10].

According to Frenkel’s equation, the gas load Qi depends on temperature T. Qo is the sum of all
the desorbing components i, at a surface coverage Ni [molecules⋅cm-2] and binding energy Ei:

Baking the vacuum system increases the temperature T  and enhances desorption. For clean stainless
steel-samples specific outgassing rates of 10-12 mbar⋅l⋅s-1⋅cm-2 are achieved routinely after in-situ
bakeout at ~3000 C. In unbaked systems the outgassing rate is typically a factor of 5 to 10 higher.

Let us assume that the specific outgassing rate as function of time qi(t) is proportional to the
total amount of gas qo,i  adsorbed on the surface

qi(t) = - dqo,i/dt .

When the surface coverage is considered to change by desorption only

N(t) = ∑ [Ni(t = 0)- (∫ qi dt)]

the gas load Qi will decrease exponentially with respect to time at a characteristic time-constant τ i for
each gas species of a Frenkel type relation:

τ i = τo exp(-Ei/kT) .
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When assuming that for a baked and an unbaked system the binding energies are the same
(since the relative composition of adsorbates stays unchanged – which definitely is an over-
simpli fication) it takes a time of approximately 2.3τb for an unbaked system to arrive the gas load Qb

of a baked one (and thus at a vacuum pressure Pb = Qb/S). Here τb is the time it needs to reduce Qo by a
factor of 1/e in the baked system. So, for a thermal desorption dominated vacuum system bake-out is
useful to achieve low pressures in a short time.

4.2 Photon-induced desorption

In the presence of SR the balance of outgassing is significantly changed. Synchrotron radiation on one
hand increases the temperature of the vacuum chamber, therefore increasing thermal desorption. On
the other hand the SR photons hitting the vacuum chamber walls create photoelectrons which scatter
on the walls, causing adsorbed molecules to desorb [11]. Thus the total gas load has to be considered
as the sum of thermal and photon induced desorption

where Q0 is the thermal gas load and η the desorption yield, e.g. the number of molecules released per
incident photon, k is the conversion factor from molecules to Torr l (k = 3.1⋅10-20 Torr⋅l⋅molecules-1 at
25 oC) and dN/dt the photon flux. According to Eq. (6) the photon flux is a function of position in the
machine.

A variety of measurements to determine the desorption yield η have been published, [12–14].
The desorption yield η is decreasing with time or, to be more precise, with the accumulated photon
flux, also named “photon dose”. The desorping molecules follow a dependence:

where ηo is the initial desorption rate of the order of 10-2 [molecules⋅photon-1] for most gas species
such as H2, CO and CO2 from standard materials such as stainless steel, copper and aluminium. It is
obvious that ηo is a quantity that depends on the cleaning procedure. It also depends on the history of
the material. α determines the dependence on photon dose D (e.g. the integrated photon flux
[photons] or integrated electron current with respect to time [A⋅h] using Eqs. (4) and (5),
respectively). Typical values of α are 0.8 to 1.2. Water, which is loosely bound by van der Waals
forces, behaves somewhat differently in this context [14].

Figure 3 displays a typical measurement
result of the desorption yield for an OFHC-copper
surface, [15]. Starting at ηo ≅  10-2 at a dose of
some 1020 photons, the yield is rapidly decreases
to values below 10-6 after a dose of 1024 photons,
equivalent to an integrated beam current of
∼ 50Ah — as 1018 photons⋅s-1 were hitting the
sample. This well -known effect, often called
“beam scrubbing” , is a powerful cleaning method
for vacuum surfaces in electron machines.

Calculation of the desorption distribution
thus has to reflect the desorped gas load
Q(x,η(D)) which is dependent on the photon flux
at location x as well as on the desorption yield
which itself depends on the accumulated beam
dose D. In order to determine the mean gas
pressure, we have to decide on the pumping
scheme, the location of pumps and their pumping
speed to derive the pressure distribution.
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Fig. 3  Desoprtion yield vs. integrated photon dose,
from Ref. [15].
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5. PUMPING SCHEME & PRESSURE DISTRIBUTION

The magnetic elements of the accelerator set important geometrical boundaries to the layout of the
vacuum system. The available apertures in the multipole magnets determine the cross section of the
chambers. At the same time the flexibilit y for optimised positioning of vacuum pumps is limited by
the presence of magnets and other elements. Thus, there is no simple way to optimise the vacuum
system.  Nevertheless one can derive a simple model of the vacuum system [10,16] to obtain a rough
insight into the performance of the pumping system. As, indeed, major parts of the vacuum chambers
do not change their shape, we consider a beam tube of constant elli ptical cross section with pumps at
constant distance L from each other. The gas flow Q [mbar⋅l⋅s-1] gives rise to a pressure difference dP
due to the specific conductance w [m⋅l⋅s-1] of the pipe. Along the direction x of the pipe in linear
approximation the gas load is

Assuming that the specific gas load q [mbar⋅l s-1⋅m-2] per specific surface area A [m] stays constant
and the total surface of the pipe of length L is F = AL [m2], then

Combining the two equations gives:

With the boundary conditions that the pressure is equal to AqL/So at the location of vacuum pumps
with pumping speed So and that due to symmetry of the problem there is a maximum at x = L/2:

a parabolic pressure dependence follows with the average pressure:

For an elli ptical pipe of length L [cm] and semi-axes a [cm] and b [cm], the conductance
C = w/L [l⋅ s-1]  for a gas molecule of mass M [amu] at temperature T [K] is given by the relation 10]:

Defining an effective pumping speed Seff, the average pressure in the section is given by:

with

For conductance limited vacuum chambers as in the straight sections of the BESSY II storage
ring the specific conductance is w = 20 m⋅l⋅s-1 for N2 (M = 28). The effective pumping speed as
function of distance L and pumping speed So is plotted in Fig. 4. The graph immediately shows that
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the optimum solution is to place as many small pumps as closely together as possible when lumped
pumps are used. Irrespective of the pumping speed of the pumps, the maximum effective pumping
speed is limited to12w/L. Realistic distances L are about 2 to 3 m demanding pumps of typically less
than 60 l/s pumping speed, yielding Seff ≈ 20 l/s. On the other hand the effectiveness of linearly
distributed pumps all along the machine circumference is obvious as L approaches zero, in this
concept the maximum pumping speed So is available at the vacuum chamber.

Fig. 4  Effective pumping speed of a conductance limited
chamber (w = 20 m⋅l⋅s-1) as function of distance L.  The
curves are for different values of the pumping speed So (20,
60, 120 l⋅s-1 and infinite pumping speed).

Fig. 5  Pressure distribution of a 1.9 GeV, 500 mA beam
in the BESSY II storage ring as expected after
accumulation of various beam doses (1, 10 and 100 A⋅h )
as well as the base pressure without beam. The magnetic
lattice of BESSY II is sketched to scale (lower part).

In a more realistic model the assumption of constant outgassing rate has to be replaced by the
position dependent q(x), while the varying conductances w(x) have to be considered correctly. Many
different computer codes have been developed to evaluate the problem Eq. (7), ranging from
spreadsheet-based macros [17], up to Monte-Carlo simulations [18, 19]. Thus the pressure profile can
be approximated piecewise and/or evaluated directly taking into account the dose-dependent
desorption rates. Figure 5 shows a calculation that was performed for the BESSY II storage ring. The
pressure distribution is plotted for different desorption conditions (accumulated doses of 1, 10 and
100 A⋅h) and for thermal outgassing, i.e. without beam. To achieve the design pressure of
<P> = 10-9 mbar, an integrated dose of ∼  200 A⋅h is required.

6. SINGLE-PARTICLE LOSS MECHANISMS

Once the vacuum pressure and the gas composition are known, scattering of the stored electrons with
residual gas molecules will cause particle losses from which we will calculate the beam-gas li fetime.
As the beam particles are considered to be independent from each other, beam-gas interactions are
considered as incoherent effects that are treated statistically.

There are two different interactions to consider:

•  Elastic scattering which leads to a transversal deflection of the beam particle. After the
colli sion the electrons will start to perform betatron oscill ations around the closed orbit.
With the assumption that the beam-stay-clear aperture of the vacuum chamber is of the
same size as the dynamical aperture, the particle is lost when the amplitude of the orbit
oscill ation exceeds the mechanical limit (mostly the vertical chamber height).

•  Inelastic scattering, where a photon is emitted in the colli sion, changes the beam particles’
energy. If the dispersive orbit exceeds the mechanical (normally the horizontal) aperture, or
if the rf-acceptance limit i s exceeded, the particle is lost [20, 21].
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6.1 Coulomb scattering

Scattering of an idealised mono-energetic electron beam in the Coulomb field of the nucleus of a
residual-gas atom of nuclear charge Z leads to an angular deflection, depending on the impact
parameter b, i.e. the shortest distance between the incoming particle trajectory and the point-li ke
target. Taking into account the screening of the Coulomb field by electrons from the target-atom
which is important for particles at large b (equivalent to beam particles scattered into small angles)
and modifying for the finite size of the nucleus, the differential cross section of the scattering process
can be found in many text books. [7]. Integrating this cross section from the minimum angle θmin for
which a particle gets lost and maximum angle θmax ≅  π gives:

As a consequence of the angle deflection θo the particle performs betatron oscill ations with
maximum amplitude

The particle hits the vacuum wall i f y ≥ a. βi and β(s) denote the horizontal or vertical amplitude
function of the ring at the location i where the scattering takes place and β(s) somewhere in the
machine, while a represents the horizontal or vertical half aperture of the chamber.

Averaging over all possible locations i (replacement of βi by the mean beta value <β>) the
cross section due to Coulomb scattering is [20, 22]:

It is evident that for increasing energy this loss mechanism becomes less important.

6.2 Bremsstrahlung

Inelastic scattering of an electron off a nucleus causing bremsstrahlung leads to an energy loss of the
circulating particle. The electron is lost when the energy deviation exceeds the rf acceptance εrf of the
ring. The total cross section for particle loss is [22, 23]:

6.3 Elastic e-e scattering

Similar to the elastic scattering of electrons off the nucleus, the beam particles also scatter with the
electrons of the atoms of the residual gas. In this process the beam electrons transfer part of their
energy to the gas atom. Again if the beam particles’ energy loss exceeds the rf acceptance limit , the
particle is lost. The total cross section for the process is [20, 21]:
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6.4 Inelastic e-e scattering

In inelastic scattering of the beam electrons with the electrons of the residual gas atoms, a photon is
emitted, which carries away part of the electron energy. Particle loss occurs when the energy
acceptance is exceeded. The loss cross section is given by [20, 21]:

6.5 The beam-gas lifetime

The number of beam particles N divided by those lost per time interval -dN/dt is the 1/e-beam lifetime
τ. The relative losses equal the cross section σi times the density of target atoms ni (the index i
corresponds to the different molecules j in the residual gas composed of kij atoms of type i with
nuclear charge of Zi). The beam travels with the speed of light c so the beam experiences a density of
these target atoms per second of ∑nic. Thus the inverse beam lifetime is given by summation of the
above cross sections:

The densities ni of atoms i from molecules j
are related to their vacuum pressure Pi via
Boltzmann's constant k and the temperature T:

At room temperature this relation in practical units
is: ni [m

-3] = 3.217 ⋅ 1022 Pi [Torr].

Comparing measured and calculated beam
li fetimes as a function of the circulating beam
intensity show good agreement at low currents,
Fig. 6. For high intensity beam, i.e. high bunch
currents, especially if only a few bunches are
circulating discrepancies are visible. The
underlying process is scattering of electrons
amongst each other inside the bunch. This effect
was identified first in the small Frascati ADA ring
and explained by Touschek [24]. Though the
“Touschek effect” is not related to the vacuum
pressure at all , it is discussed in some detail here as
the horizontal aperture of the vacuum chamber is
affected.

6.6 Touschek effect

Low emittance synchrotron light sources as well as B-meson factories operate at high electron
densities in the circulating bunches. The probabilit y that electrons inside the same bunch scatter off
each other is proportional to the particle density in the bunch. Thus current dependent particle losses
further decrease beam lifetime with respect to beam-gas li fetime.

The scattering of particles within a bunch is called the Touschek effect. If the energy transfer in
a colli sion is large enough the particle is lost if the momentum deviation exceeds the momentum
acceptance of the machine. Furthermore if the scattering takes place in a dispersive region the
amplitudes of the resulting horizontal betatron oscill ations may exceed the geometrical vacuum
chamber aperture. Touschek beam lifetime [20, 24, 26] is not related to the vacuum pressure but the
vacuum chamber design may influence it via pure geometrical parameters. The inverse Touschek
li fetime is given by:
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with

for a flat beam and the D-function defined by

It may be worthwhile to point out that the Touschek loss rate
depends on the square of the number of electrons in a bunch as
two electrons are involved in the colli sion, dN/dt = -aN2.
Therefore the total beam lifetime does not show an exponential
decay with time t as in case of the beam-gas events. The
development of current I(t) with time is:

Depending on the machine momentum acceptance,
Touschek-scattered electrons require a certain minimum beam-
stay-clear aperture. As an example Fig. 7 shows the theoretical
predicted Touschek li fetime at BESSY II as a function of
horizontal chamber half-apertures at different momentum
acceptance ∆p/p of the ring. The Monte-Carlo approach [27] is
in excellent agreement with the analytical approach used in the
ZAP program [28]. Thus the vacuum chamber design has to
provide an aperture wide enough to allow safe operation.

Especially for low energies and high intensity storage rings
one requires a more detailed analysis of multiple-small -angle
Coulomb scattering (multiple Touschek scattering) [29]. The
effect of intra-beam scattering has been seen in hadron and heavy-
ion machines especially when phase-space-cooling techniques are
used [30]. However, littl e time has been spent on this problem in
the case of electron storage rings.

7. IMPLICIT REQUIREMENTS FOR THE VACUUM SYSTEM

The beam particles generate an electromagnetic “self” -field according to Maxwell ’s equations. The
boundary conditions that are given by the geometry and electromagnetic properties of the vacuum
chamber materials strongly influence the solution of the differential equations. An analytical solution
of Maxwell ’s equation taking into account all details of an actual machine environment is definitely
impossible. Nevertheless, in order to get information on instabiliti es generated in the beam in the
presence of the electromagnetic fields, the concept of impedances was introduced. In analogy to
Ohm’s law, longitudinal and transversal impedances Z  and Z⊥  are defined [31, 32] by:
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Fig. 7  Calculated Touschek li fetime for
the BESSY II Synchrotron Light Source as
a function of horizontal aperture and
machine-momentum acceptance ∆p/p. A
100 mA beam spread in 320 bunches with
bunch length σ = 5 mm is assumed. The
dots are li fetimes obtained using the
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and

where S// is the beam current and ST the beam signal while E and B are the electrical field and
induction, respectively. The impedances are considered as the origin of longitudinal and transversal
beam instabiliti es. The impedances are complex function of frequency ω.

It is useful to distinguish between single-bunch and multi -bunch operation in the accelerator.
Single bunches are affected, with respect to stabilit y, by broadband impedances associated with short-
range wake fields. The longitudinal broadband impedance may cause bunch lengthening, while the
transverse impedance allows the current-dependent growth rates of instabiliti es (i.e. head tail and
strong head tail i nstabilit y) to be derived. If these growth rates are faster than the “natural” damping
times due to the emission of SR, the beam will be unstable.

Similarly, when trains of bunches are circulating in the ring (multi -bunch operation), the long-
range wake field and their associated longitudinal and transverse impedances can generate
longitudinal and/or transverse coupled-bunch oscill ations (instabiliti es). Only in very special cases
can analytical formulae for the impedance be derived, i.e. the resistive-wall impedance of a long
circular tube.

7.1 Resistive-wall impedance

The finite resistivity of the vacuum chamber is the origin of a longitudinal and transversal impedance
(restive-wall impedance). For a long circular pipe of radius b the impedances are given by the
analytical expressions [32, 33]:

and

with the chamber length C = 2π⋅R equal to the machine circumference. ρ is the resistivity of the wall
material with skin depth δ given by:

where µo = 1.25⋅10-6 Vs A -1 m-2 is the permeabilit y of the vacuum, and Z0 = µo⋅c = 377 Ω the
impedance of vacuum. As it is common to use Z/n rather than Z, we also will use the relation:

where ωo = 2⋅π⋅fo with fo the revolution frequency of the beam in the ring.

The longitudinal impedance gives rise to a growth rate of longitudinal coupled bunch modes for
a beam of n bunches and bunch-current I. If the inverse growth rate is larger than the natural damping
time, the beam will be damped, otherwise the bunches start longitudinal oscill ations.
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Transverse coupled bunch oscill ations are excited when the growth rate is smaller than the
transverse radiation damping time. Fortunately – as the resistive-wall growth rate depends on
chromaticity and working point of the machine – changes to the excitation of sextupole magnets in
the ring or selection of a new tune can help to damp the instabilit y. Nevertheless the b-3 scaling of the
transverse impedance is a problem for modern SR light sources where a considerable fraction of the
machine circumference is equipped with narrow vertical chambers for small gap undulators.

7.2 Impedance of the vacuum system in general

Designers of vacuum chambers are confronted with the problem of including into the machine various
items such as bellows, flanges, pumping ports and tapers for changes of the chamber cross section. To
evaluate their contribution to the machine impedance each item needs to be considered separately,
using well known codes such as MAFIA [34] and TBCI [35]. In the time domain the wake function
W(t) generated by the bunch with charge distribution I(t) is calculated from Maxwell ’s equations. The
coupling impedance Z(ω) then is the complex power spectrum of the wake function normalised to the
charge distribution in the frequency domain:

Figure 8 shows an example using a Gaussian charge distribution I(ω) = q1 exp[-1/2(ωτ)2] with
the resulting wake function [36]. The geometry under consideration in the example is that of one of
the 112 beam position monitors in the BESSY II storage ring. They give a significant contribution to
the longitudinal impedance with a prominent resonance at ω = 45 GHz.

Summing up all impedances at BESSY II gave a total longitudinal coupling impedance nearly
constant over the frequency range ω = 0 – 140 GHz for the BESSY II r ing with Z/n ≅  0.3 Ω, Fig. 9.

Fig. 8  Upper part: Beam charge distribution i(t) and wake
function W(t) caused by a beam position monitor as function
of time. The two lower graphs show the real and imaginary
part of the longitudinal impedance [36].

Fig. 9  Calculation of the longitudinal coupling
impedance for the BESSY II storage ring [36].
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8. ACCELERATOR VACUUM SYSTEMS IN ROUTINE OPERATION

Already during accelerator commissioning any error in the design and production of the vacuum
hardware will show up. Effects range from incorrect vacuum gauge pressure readings, due to the
sensors being installed too close to the fringe field of magnets, to enhanced desorption rates of heavy
contaminants caused by inappropriate cleaning methods. Obstacles in the chambers as a result of
manufacturing or cleaning errors as well as melted rf liners in bellows sometimes reduce the vacuum
chamber aperture to the point that no beam can be injected. In such cases, the vacuum system has to
be re-opened to cure the problem. Macroscopic particles such as “dust” degrade the beam lifetime in
some electron machines in an unpredictable way. Finding the origin of the problem and its cure is a
very diff icult job.

9. CONCLUSION

There is a wide range of technical details that have to be considered by the vacuum designers.
Whatever solutions are selected they have to allow correct operation of the machine. Thus vacuum
design of today’s accelerators is a challenging task.
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