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Abstract
The present lecture is based on a revised version of the one given 6 years
ago at the CERN Accelerator School [1]. After a brief review of the adverse
effect of neutralisation in particle storage rings, the basic topics of ion
production by ionisation of the residual gas are recalled: ion production rate,
natural clearing rates, ion kinematics and conditions of trapping for bunched
and unbunched particle beams with positi ve or negative space charge.
Different methods of clearing are described and their performance
discussed, namely, DC clearing electrodes, empty buckets (in electron
storage rings) and beam shaking. Examples of neutralisation effects and
diagnostics are taken from CERN machines, such as ion clearing current
measurements on electrodes, tune shifts and emittance measurements.

INTRODUCTION

In accelerators and storage rings, ions created by the circulating particles from neutral molecules of
the residual gas may be trapped in the beam-space-charge potential and may generate all sorts of ill
effects: reduced beam lifetime (increased pressure), emittance growth and losses through excitation of
resonances, and coherent beam instabiliti es. While they can occur in proton beams (e.g. CERN ISR
trapping electrons), these neutralisation phenomena mainly affect machines with negative beam space
charge such as electron storage rings and antiproton accumulators.

Low energy machines are more subject to ion trapping because of their small size, which leaves
littl e space between bunches for ions to escape the beam potential, and suffer most because of their
inherent high sensiti vity to space-charge effects. The ion-induced space-charge tune shifts ∆Q can be
unacceptably large if γ is small (low energy) and/or the neutralisation η is high.

1. NEUTRALISATION OF A BEAM: A SIMPLE DESCRIPTION

The circulating particles in a stored beam colli de with residual gas molecules producing positi ve ions
and electrons. A negatively charged beam (e.g., electrons or antiprotons) captures the ions and repels
the electrons towards the vacuum chamber walls1. If other possible natural or artificial clearing
mechanisms are not present, the neutralising ions accumulate up to the point where the remaining
trapping potential is effectively zero, i.e., until the number of static neutralising particles is equal to
the number of beam particles. The beam is then fully neutralised. The average neutralisation factor is
defined by

η =
ni

ne

,
 

(1)

where ni is the total neutralising charge measured in units of the electronic charge and ne is the
number of stored beam particles. The neutralisation is often not homogeneous along the machine
azimuth s, and we define a local neutralisation factor by

                                                
1 Positively charged coasting beams trap electrons, and this effect has been extensively studied in the CERN ISR
(see references). Bunched proton or positron beams do not suffer from neutralisation problems because the
electrons are not stably trapped (cf section 5).
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η s( ) =
2πR

ne

dni

ds
, (2)

where 2πR is the machine circumference and (dni/ds) is a local li near neutralising charge density
(measured in units of electronic charge per meter)2.

In order to get a feeling for the orders of magnitude involved in neutralisation problems, we
consider a set of machine parameters corresponding to typical values for the CERN electron-positron
accumulator (EPA). We disregard, for the time being, the fact that the EPA electron beam is bunched
and only calculate longitudinally averaged values. Also, for the sake of simplicity, we assume a round
beam with a homogeneous transverse charge distribution. The beam current is I = 100 mA, the energy
is E = 500 MeV and the beam radius is 0.5 mm. The corresponding linear particle density is

λ =
dne

ds
=

I

eβc
=2 ×109 particles/m. (3)

The electric field at the beam edge is obtained via Gauss's law.

ε =
eλ

2πε0a
=1.2×104 volt/m. (4)

The magnetic field at the edge is obtained via Ampere's law:

B=
Iµ0

2πa
=4 ×10−5 T.        (5)

The total direct space-charge force on a circulating electron is
�
F = e

�
ε +

�
v ×

�
B ( )= �

F e +
�
F m =

�
F e

1

γ 2 , (6)

where γ is the total relativistic beam energy in units of the rest energy and 
�
F e  is the electrostatic force.

The fact that the two forces counteract results in the so-called relativistic cancellation. With
neutralisation, the electrostatic force is changed from 

�
F e  to 

�
F e 1−η( ) and the magnetic force is

unchanged. Then

�
F=

�
Fe

1

γ 2
−η

 
  

 
  

 

. (7)

The force which we have calculated at the edge of the beam is in fact proportional to the distance to
the centre of the beam. The corresponding local quadrupole has a strength (with the Courant and
Snyder definition [2])

k s( )=−
1

E

dF

dr
. (8)

We simpli fy the formulae by introducing the classical electron radius

re =
e2

4πε0mec
2 = 2.82 ×10−15m.

(9)

                                                
2 Some authors define an average neutralisation factor for bunched beams as the ratio of the average neutralising
charge density to the bunch charge density. This is related to our definition through the bunching factor B =
(NbLb)/(2πR) where Nb is the number of bunches and Lb is the bunch length. This definition is useful when one
compares the incoherent space-charge tune shift with the neutralisation induced tune shift.
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and the local beam volume density

de =
dne

ds

1

πa2 = 2.7× 105 particles/m3 (10)

so that, with Eqs. (4), (7), (8), (9), and (10),

k s( ) = −
2π
γ rede

1

γ 2 − η
 

  
 

  (11)

and the corresponding tune shift is

∆Q =
1

4π
β s( )k s( )ds,∫  (12)

where β(s) is the usual Twiss parameter and the integration is done along the machine azimuth.
Instead of calculating the integral, we use average values for all quantities involved3:

∆Q=
re 2πR( )β 

2γ
deη . (13)

For  β =  4 m and 2π R = 126 m, we find

∆Q ≈ 2η  (14)

and machine performance will be limited for values of η  above a few percent.

2. THE IONISATION PROCESS

The circulating beam interacts with the electrons of the molecules of the residual gas and with the
ions trapped in the beam. In turn the trapped ions interact with the molecules in many different ways.
In the following sections, we briefly review these phenomena.

2.1 Transfer of energy to free
electrons

An estimate can be obtained through the
calculation of the electrostatic interaction
between a free electron and the primary
particle (Jackson [3] section 13.1). The
energy transfer E'(b) is a function of the
impact parameter b (Fig. 1).

Incident electron

                                                        Target electron

Fig. 1  The impact parameter b.

Equation 13.2 of Jackson, where the field at the electron is obtained by a Lorentz
transformation, can be rewritten in mks units and with the classical electron radius:

E ′ b( ) = 2me c2

β2

re2

b2
(15)

or

b2 =re2
1
E'

2me c2

β2
,

(16)

                                                
3 We now disregard the small direct space-charge contribution.
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where βc is the velocity of the primary particle and E'(b) is the transferred energy.

The cross-section dσ for energy transfer between E’ and E’+ dE’  is

dσ = 2π b db (17)

or

dσ = 2π
me c2

β 2 re
2 dE'

E'2
. (18)

One sees immediately an unphysical situation for E' = 0 (b large, distant colli sions) and E´ = ∞ (b
small , close colli sions). The diff iculty is solved by the definition of a minimum energy E ′min  and a

maximum energy E ′max.The maximum energy E′max can be obtained from pure kinematic

considerations,4 whereas the minimum energy requires a detailed analysis of the medium in which the
interaction takes place.

The above formulae
cannot be used to compute the
exact ionisation cross-section,
as we shall see below, but
they give a fair description of
the phenomenon. Detailed
measurements of dσ / dE
have been made [95] and are
shown in Fig. 2.

An ionisation event
takes place only if the energy
transferred is above the
ionisation potential. Most free
electrons created in such an
event will be left with a rather
small energy and will
therefore be trapped by the
beam (Fig. 2). In Ref. [96], it
has been calculated that
about 80% of the electrons
have an energy below 45eV,
the average being around a
few eV. The ion energy will be smaller in the ratio of the masses and therefore negligible. These
electron energies, however, should be used to calculate their drift velocities (cf. section 3) because
they are several orders of magnitude higher than the thermal energy (~10-2 eV at 300 K). This is not
the case for ions. The proportion of ions not trapped because they are created with an energy larger
than the potential well i s negligible (less than 4% for a potential well of a few hundred volts [96]).

2.2 Ionisation cross-section

The ionisation cross-section depends on the molecule of the residual gas and on the velocity of the
ionising particle but neither on its charge nor on its mass5. Measurements have been made [98] for
various incident electron energies and the results were fitted to the theoretical expression by Bethe
(see [4], p.45):

                                                
4 For relativistic incident particles, quantum or relativistic effects further reduce the maximum energy transfer [4].
5 Here we only consider ionisation by charged particle impact. Photo-ionisation in electron machines is analysed   in
ref. [97].

Fig. 2  Relative probabilit y of different processes induced by fast (100 keV) electrons
in water, as a function of the energy transfer in a colli sion [95]. The maximum
kinematically allowed energy transfer, Emax= 50 keV in this case, is also shown.
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σ i = 4π
�
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2

M2 1
βe
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βe

2

1− βe
2

 
 
  

 
 − 1
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βe
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(19)
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m1087.14 −×=






mc

�

π  . (20)

The experimentally determined coeff icients C and M2 for different molecules are shown in Table 1.
Figure 3 shows a plot of the cross-sections given by the formulae above.

Table 1
Value of the M2 and C constants for calculation

 of ionisation cross-sections

Molecule M2 C Z A
H2 0.5 8.1 2 2
N2 3.7 34.8 14 28
CO 3.7 35.1 14 28
O2 4.2 38.8 16 32
H2O 3.2 32.3 10 18
CO2 5.75 55.9 22 44
C4H4 17.5 162.4 46 76

2.3 Ionisation rate

The time it takes for one circulating particle to create one ion is given by:

τm =
1

dmσ mβc
(21)

where dm is the molecular density (m-3); τm is the ionisation cross-section for molecule m (m2); βc is
the velocity of the circulating beam (m.s-1)

The molecular density dm is related to the partial pressure Pm in torr by the relation (valid at
20°C).

dm = 3.3 ×1022 Pm (22)

If there are several types of molecules in the residual gas then the total ionisation time τ i is given by
the relation.

1

τ i

=
1

τ mm
∑ .

In electron storage rings with typical residual pressures of 1 nTorr composed of CO and H2, the
ionisation time is of the order of one second or less.

2.4 Beam heating

Distant colli sions with large impact parameter — much more probable than close ones leading to
ionisation — are important, since they feed energy differentiall y to ions. In some circumstances
(neutralisation pockets) this may be a clearing mechanism, i.e. when the trapped species get enough
energy to escape the beam potential V:

Rc = 1

eV

dE

dt
= 1

eV
∆E b( )

b
min

b
max∫ 2πbβcNpdb( ) .

Fig. 3  Ionisation cross-section vs γ
for CO2 and N2
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This represents the "natural" clearing rate for a singly-charged species. The expression between
brackets is the number of projectiles passing at distance b to the ion target during time dt. Np is the
projectile density of charge Z = 1.

To good approximation bmax and bmin can be chosen to have the same values as the ion and
nucleus radii respectively, leading to [3]:

Rc =
2πm0 c3 r0

2

β
⋅

Np ′ Z 

eV
⋅ ln 3⋅104 ⋅ ′ Z −2 / 3( ) (23)

with m0 and r0 being me, re if the trapped species is an electron, mp, rp for a proton; 2 mp, rp for an ion of
charge Z’ .

As an example, typical clearing times for the EPA machine with 6.1011 electrons (300 mA),
1 mm beam radius, giving a beam potential of ~ 50 V, are shown in Table 2.

Table 2
EPA natural ion clearing rates

Clear ing rate Rc

(s-1)
Clear ing time ζζ c

(s)
H+

H2

+

CO+

CO2

+

3.10-3

6.10-3

0.04
0.07

350
166
25
15

The process is thus slow compared to typical ionisation rates. But it may be important to
explain why in some circumstances, e.g. pockets with very low gas pressure (5.10-11 Torr, see AA case
in reference [116]) full y ionised light ions can accumulate to a dangerous level, as they replace heavy
ones which are chased away by beam heating.

2.5 Gas cooling

Seldom taken into account, gas cooling could be an important process for high pressures and long ion
resting times. Charge-exchange phenomena by which a positi ve ion captures an electron from a gas
molecule may occur at ion energies of only a few eV. The new ion is created with the primary
molecule's energy, while the newly created neutral species carries away the initial ion energy.
Resonant capture cross-sections between an ion and its own neutral molecule can be very high at low
energy:

HeinHeforcm102.1 215 +−×=σ

for an ion energy of 3 eV. With this cross-section, it would take only 27 seconds at 10-8 torr for an ion
to capture an electron and thus leave a cool ion behind. Capture cross-sections are even higher for
heavy gas species .

2.6 Limits on ion accumulation

In the vast majority of cases (electron storage rings with typical pressures of 10-9 torr and ionisation
times of a second or less), ionisation is the dominant effect in the absence of any clearing mechanism.
The neutralisation reached at equili brium is strongly dependent on the quality of the vacuum (gas
species and densities). To ill ustrate this, we consider the over-simplistic case of constant ionisation
cross-sections. The production rates are, for singly-ionised species (density Ni

+):

d Ni
+( )

dt
= Nm Npσ ic − Ni

+Npσ i c = Npσ i c Nm− Ni
+( )
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doubly ionised:

d Ni
++( )

dt
= Ni

+
Npσ ic − Ni

++
Npσ i c = Npσ ic Ni

+ − Ni
++( )

etc. until (Z’ being the total number of electrons of the gas atom):

( ) ( ) .1 cNN
dt

Nd
ip

Z
i

Z
i σ+−′

+′
=

In the steady state:

Ni
+ = Ni

++ = ... = Ni
′ Z − 1( )+ ≤ Nm .

Therefore partiall y ionised ions can, at most, reach the
molecular density Nm. Only the fully ionised state Ni

Z’+ could
get close to the particle density (usually much larger than the
gas density) divided by the final charge state: Ni

Z`+ ≤ Np/Z’
corresponding to full neutralisation of the particle beam.
(“Over” neutralisation can for most cases be excluded, since
the resulting potential would chase the species to the chamber
wall .)

The degree of neutralisation of a particular beam can be
estimated from the incoherent tune shift (see Sec. 9). Almost
full neutralisation has been measured in the CERN AA when
all the clearing electrodes are turned off  (Fig. 4).

3. THE ION OR ELECTRON MOTION

The temperature of the molecules of the residual gas will be
slightly increased by the interactions with the beam. However,
the reservoir of molecules is so big that the energy in the gas
will be the energy related to the temperature of the vacuum
chamber walls, usually 300 K. The energy of the electrons
acquired through momentum transfer from the circulating
beam in the ionisation process will be of a few eV and the
energy of the ions lower by the mass ratio

me

Amp
(24)

where Amp is the mass of the ion, and me, the mass of the electron. The electrons and the ions created
inside the beam will either be chased out or oscill ate in its potential well . Their motion will be
influenced by magnetic fields. The analysis of these different energies and motions is the object of
this section.

3.1 Energy, temperature, velocity

The distribution of velocity of molecules of mass m in a gas of density dm at temperature T is given by
the Boltzmann equation

dn =
1

2
dm

m3

2π3 k3T 3 e
− m

2kT
υ x

2 + υ y
2 + υ z

2( )
dυxdυydυz, (25)

Fig. 4  AA transverse vertical Schottky
scan showing the band (7 + Qv)f rev with
clearing electrodes turned OFF (full
neutralisation) and ON (littl e
neutralisation)
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where dn / dυx dυ ydυzis the number of particles per unit volume around velocities υxυyυz  and
k = 1.4 × 10-23 J/K or k = 8.6 × 10-5 eV/K is Boltzmann's constant.

One finds successive mean velocities by integration

υ =υm =
8kT

πm

 
  

 
  

1

2

υ 2( )
1

2 = υ rms =
3kT

m

 
  

 
  

1

2

υ x = υy = υz = υ|| =
2kT

πm

 
  

 
  

1
2

with naturally
υ x = υ y = υ z = 0 ,

so that
υm = 2υ || AnnexI( ).

The mean kinetic energy is

E =
1

2
mυ2 =

1

2
mυ rms

2 =
3

2
kT. (26)

Table 3 ill ustrates for different molecules the relation between energy, temperature, and velocity.

Table 3
Relation T(K), E(eV), υ|| (ms-1) for various molecules

A vrms vll

H 1 2.7 × 103 3.7 × 103

H2 2 1.9 × 103 2.6 × 103

T = 300 K, E = 
6.3×10-21 joule

3.9×10-2 eV

 
 
 

î  

H20
CO/N2

C02

e-

18
28
44

1/836

6.5 × 102

5.2 × 102

4.1 × 102

1.2 × 105

1.0 × 103

0.7 × 103

0.6 × 102

1.6 × 105

H2 2 9.8 × 103 13.5 × 103

T = 7.8 × 103 K, E = l eV N2 28 2.6 × 103 3.6 × 103

e- 1/1836 6.0 × 103 8.3 × 103

H2 2 3.1 × 104 4.3 × 104

T = 7.8 × 103 K, E = l0 eV N2 28 8.3 × 103 11.5 × 103

e- 1/1836 1.9 × 106 2.6 × 104

3.2 The electr ic field and the potential well

Before analysing the motion of the ions, we compute the fields which act on the ions and the electrons
which have been 'just created'. In the absence of external fields, an electric field is produced by the
circulating beam. This field defines a potential and the value of the potential is fixed by the fact that
the vacuum chamber is at ground potential. We consider the simpli fied case of a circular beam in a



173

circular chamber, where a is the radius of the beam with uniform density in real space, r the radial
variable and r0 the vacuum chamber radius. We have seen already that the field can be calculated with
Gauss's law:

ε r =

eλ
2πε0

r

a2
r ≤ a

eλ
2πε0

1

r
r ≥ a

 

 
 
 

î 
 
 

 

. (27)

The potential is obtained by integration

V = − ε r∫ dr , (28)

the constant being fixed by the condition

V = 0   for   r = ro .

The result is

V =
eλ

2πε 0

− r 2

2a2
+ 1

2
+ ln

r0

a

 
  

 
  r ≤ a

ln
r0

r
r ≥ a.

 

 
 
 

î 
 
 

(29)

Figure 5 represents the potential for our nominal beam with 100 mA circulating current, a vacuum
chamber of 100 mm diameter and different beam sizes. Figure 6 represents the value of the central
potential VO for different ratios a/rO. The motion of ions or electrons in this field is very simple: in a
beam of electrons or antiprotons, electrons are chased and arrive on the wall with an energy eVO ,ions
are trapped if their transverse energy is less than eVO . Since the probabilit y of energy transfer larger
than the potential well i s very small , ions are always trapped (see section 5 for stabilit y considerations
in bunched beams).

The detailed calculation of the potential well for non-cylindrical geometries has been made
[26]. We give in Annex II the resulting formulae to be used in practical calculations.

Fig. 5  Potential well for different beam sizes. The number
attached to each curve is the ratio r

o  /a.
Fig. 6  Depth of the potential well vs beam size.
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Figure 7 is the result
of the calculation made for
the ISR. These potential
wells have been directly
measured [34, 83].

If the vacuum
chamber size or the beam
size varies in a long straight
section, the electron or ion
will drift towards the
deepest potential well . The
kinetic energy gained in the
process can be considerably
higher than the thermal
energies since the variations
of potential energy can reach
several tens of eV. while the
thermal energies are of the
order of 10-2 eV

3.3 The effect of the magnetic field

The motion of a particle in a uniform magnetic field is simple, it is the well known cyclotron motion
[3]. When the field has a gradient perpendicular to the field direction, a drift of the particle occurs
which is called the gradient drift. If the gradient of the field is in the direction of the field there is a
containment effect called the magnetic mirror. This section studies these three effects.

3.3.1 Cyclotron motion

In all these problems one separates the velocity
into its two components (Fig. 8):

�
υ || parallelto

�
Β 

�
υ ⊥ perpendicularto

�
Β 

with

υ2 = υ ||
2 + υ ⊥

2 . (30)

If the field is uniform ∂B / ∂r = 0, then the velocity along the field �υ || is uniform and unchanged. The
perpendicular velocity υ⊥  induces a force and therefore an acceleration.

m
d �υ ⊥
dt

= e �υ ⊥ × �Β .

This is a central force perpendicular to 
�
υ ⊥  which gives a circular motion, the radius r of the circle is

obtained by equating the central acceleration to the centrifugal force.

eυ ⊥ ⋅ B= m
υ ⊥

2

r

The angular frequency ωc also called cyclotron angular frequency is

Fig. 7  Beam potential in the ISR. The position of the clearing electrodes is
indicated by dots.

Fig. 8  υυ 		  and ⊥
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ωc =
υ⊥

r
(31)

which gives

r = mυ⊥

eB
(32)

 ωc = eB

m
(33)

with the remarkable result that ωc  does not depend on υ⊥  : in a given field the larger the velocity the
longer the radius, but the frequency does not change for a given particle.

3.3.2 Effect of a transverse gradient (the gradient drift)

We have already seen that

υ⊥ = r
eΒ
m

= rωc

but here

Β = Β0 +
∂Β
∂x

⋅x.

The projection of the velocity on z gives (with x = r cos ωct)

υz = υ⊥ cosωct = r
eB0

m
cosωct + r

e

m

∂B

∂x
⋅ r cosωct ⋅ cosωct  .

Then the mean velocity is not zero, corresponding to a drift

υD = υz =
1

2
r 2 eΒ

m

1

Β
∂Β
∂x

.

This calculation only applies if the field variation over the cyclotron motion is small , that is, if

r
∂Β
∂x

〈〈 Β .

This effect is called the gradient drift. It can also be written:

υD =
1

2ωc

υ⊥
2 1

Β
dΒ
dx

.

This gradient can only be created by a curvature of the magnetic field, particles with a velocity
parallel to the magnetic field v|| will have to follow the field lines. This curvature will give an
additional drift [3] so that the final drift can be written as

υD = 1
ωc

υ||
2 + 1

2
υ ⊥

2 
 

 
 

1
Β

∂Β
∂x

. (34)
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3.3.3 Effect of a longitudinal gradient (the magnetic mirror)

We assume that Bz changes with z. This gives a set of lines of force as
sketched in Fig. 9. When the particles move to the right towards higher
fields, the field lines are more dense. A variation of f lux through the
orbit would induce an electromotive force and therefore an exchange of
energy between the static magnetic field and the particles. This is not
possible so the flux circled by the particle is constant. (The exact
demonstration makes use of the action integral (see Jackson [3] p. 422).)

πΒ r 2 = π Β0 r0
2

or, using the equation of the cyclotronic motion,

υ⊥
2 =υ ⊥ 0

2 Β
Β0

.

Since the kinetic energy of the particle is conserved υ2 = υ0
2 . So that (Eq. 29)

υ||
2 = υ0

2 − υ ⊥ 0
2 Β

Β0

. (35)

If  B becomes large enough, then υ||
2 = 0. The motion of the particle is stopped. Detailed calculations

show that the particle in fact spirals back.

Looking at Eq. 34 it is clear that the particle will be trapped if υ|| can reach zero,
that is if

υ||0

υ ⊥ 0

<
Β
Β0

−1
 

 
 

 

 
 

1
2

. (36)

With an isotropic distribution of speed at the time of creation of the particle the proportion of particles
trapped will be:

R=1−
Β0

Β . (37)

3.4 Combined effects of εε   and B (the cross-field dr ift)

We consider the magnetic field of a magnet and the electric field of the
beam (Fig. 10). The electric force is: e
ε  and the magnetic force is:
e ⋅ �υ ⊥ × �Β . At equili brium

υ⊥ =
ε
Β . (38)

This equili brium can only be attained if υ⊥  can reach ε / Β  that is if

ε
Β

< c.

A rather simple analysis shows that indeed if ε < cΒ  this equili brium is always reached. However, the
time it takes to reach that equili brium is approximately the time it takes for the field to accelerate the
particle to an energy corresponding to the velocity υ⊥ . In practice during the acceleration phase
where υ⊥ ⋅ Β  is very small compared to ε, the magnetic field can be neglected. If ε/B > c this
equili brium will never be reached, the magnetic field can be neglected. In all the practical cases which
will be considered, the motion can be described by a pure acceleration or a pure drift. Where ε/B « c
the equili brium is reached in less than a µs and the transverse displacement is less than a µm.

Fig. 9  The magnetic mirror.

Figure 10: Cross-field drift


