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CLEANING FOR VACUUM SERVICE

R.J. Reid
CLRC Daresbury Laboratory, Warrington, UK

Abstract
This paper will discuss the background to choosing an appropriate cleaning
process for a vacuum vessel or component dependent on the pressure regime
required. Examples of cleaning techniques and processes will be given and
ways of determining whether or not an item is suff iciently clean will be
discussed.

1. INTRODUCTION

Experience shows that in order to achieve all but the most modest levels of vacuum it is necessary to
clean vacuum vessels and components in some way. This is because as far as vacuum is concerned,
the world is a dirty place! In general, vessels and components will have been machined, worked in
some way or another, or handled. Such processes may use greases or oils which have high outgassing
rates or vapour pressures and which will remain on or in the surface. Marking pens and adhesive tapes
leave residues on surfaces that can also enhance outgassing. Water, solvents and other liquids can
remain embedded in cracks or pores in a surface and can outgas over long periods. All such
contamination can limit the base pressures attainable in a system.

In general terms as far as vacuum is concerned, we define contamination as anything which

• prevents the vacuum system from reaching the desired base pressure

• introduces an unwanted or detrimental species into the residual gas

• modifies the surface properties of all or part of the vacuum system in an undesired way.

Thus for example, a pool of liquid mercury in a vacuum system will , at room temperature, limit
the base pressure to about 2x10-3 mbar, its vapour pressure. If the system were required to operate at,
say, 10-5 mbar, the mercury would be a contaminant.

In an electron storage ring, the cross section for electrons scattering off a residual gas molecule
increases as the square of the atomic number, Z, of the scattering species. Thus, for long beam
li fetimes (i.e. low electron losses), it is important to minimise the partial pressures of high-Z species
which are contaminants in the residual atmosphere.

In a system operating at 10-8 mbar, the partial pressure of hydrocarbons might be 10-11 mbar.
These hydrocarbon molecules striking a mirror surface can crack or polymerise when irradiated by
electrons or photons, leading to maybe graphite-li ke overlayers or to insulating layers. A complete
monolayer might form in about 12 days, assuming that 1 in every 10 molecules impinging on the
surface is cracked and sticks. The optical properties of the mirror are therefore altered by the surface
becoming contaminated.

Hence there is a necessity to clean to remove actual or potential contaminants. We will define a
suitable cleaning process as one which results in the residual vacuum being suitable for the task. This
definition is heavily influenced by the observation that most people who use vacuum are not
interested in vacuum as such but are interested in an industrial process (semiconductor chip
production or metal refining for example) or a scientific experiment (such as studying chemical
catalytic reactions on a surface) or operating a machine (maybe a particle accelerator). What they are
interested in is having a defined, controlled atmosphere and vacuum is just the simplest way of
achieving this.

In this discussion, we shall be considering in very general terms some of the factors influencing
the choice of a cleaning process. This article is an overview and does not pretend to be a
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comprehensive review citing the literature in detail . A (very) short and selective bibliography is given
at the end and interested parties can use the references in these papers as a starting point for a more in
depth survey.

2. CHOOSING A CLEANING PROCESS

There is no one cleaning process which is “ right” for all vacuum systems, vessels or components.
Some of the things which will need to be taken into account are as follows

• the level of vacuum required (rough, high, UHV, etc)

• if there is a particular performance requirement (e.g. low desorption)

• whether there is a particular contaminant (e.g. hydrocarbons) whose partial pressure
must be minimised

• what materials the items are made from

• how the items are constructed

• safety

• cost.

Once these have been considered, and we will l ook at some of these in more detail below, then one
can begin to choose a cleaning agent and the necessary processes to achieve the desired result.

It is important to realise that there are very many different “ recipes” in the literature and in the
folklore of vacuum. Advocates of a particular process or procedure will defend their choice with an
almost religious fervour. Generally, this is because the procedure “works” for them, i.e. it meets their
requirements. Often this procedure will not have been tested rigorously against other possible
procedures which might be equally good if not better (in some sense) and will t herefore in no way
have been optimised. This is not necessaril y a problem. It often simply means that the processes being
used may not be as economical or convenient as they might be. Whether this is important or not
depends on the individual situation.

In this article, we will l ook briefly at both chemical and physical cleaning processes. There are,
however, some general points which should be taken into account when deciding what to use. Some
of these are as follows.

• Some “cleaning” processes which are often used are applied more for cosmetic purposes
to make vacuum chambers look clean by producing mirror finish surfaces and so on.
Whether from a vacuum point of view they are actually cleaner is by no means to be
taken for granted. Such surfaces could, for example, exhibit enhanced outgassing.

• The minimum chemical cleaning process compatible with the level of
vacuum/cleanliness required should always be chosen. The less that needs to be done to a
vacuum surface the better.

• Chemical cleaning is a hazardous procedure so must be done safely!

• Processes such as bead or shot blasting, grinding, scraping and mechanical polishing can
leave dirt trapped in voids in the surface of materials which can then be very diff icult to
remove.

• Acid treatments such as pickling, passivation or electropolishing can trap acids in the
surface of the material. For demanding UHV applications, a vacuum bake to 450oC is
required to remove these completely.

3. DEPENDENCE ON THE BASE PRESSURE REQUIRED

In general the lower the base pressure required, the more rigorous the cleaning process will need to
be. (Note that in general it i s preferable to use the term “base pressure” rather than “ultimate
pressure” which is commonly used. Base pressure refers to the lowest normal pressure attained in a
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vacuum system in its working condition, whereas ultimate pressure strictly refers to the lowest
pressure obtained in a standard defined system measured in a standard way.)

Figure 1 ill ustrates in a very schematic fashion some typical common cleaning processes which
would be used in sequence. To use this figure, select the approximate pressure required and then
apply all the processes in order from the top to the level corresponding to the pressure required.

Fig. 1  Simple cleaning procedures

4. DEPENDENCE ON CONTAMINANTS

The user will have to determine what level of contaminants can be tolerated in any given process. It is
important to distinguish between the total pressure required in the system and the partial pressures of
particular species that can be allowed. As has been said, most processes use vacuum simply because it
provides an easily controlled environment for the process and it is really what can and cannot be
tolerated in that environment which is important.

For any given process, the user may have to determine by tests what cleaning is necessary to
obtain the desired environment.

As has been discussed above, one very common requirement is to reduce hydrocarbon
contamination to a minimum. This will often best be achieved by washing in a hot organic solvent
such as trichloroethylene or perchloroethylene (where use of these substances, both chlorinated
hydrocarbons, is permitted) followed by washing in hot clean demineralised water and a vacuum
bake.

A general cleaning recipe that works in many circumstances is given in Section 7.1.

5. HOW CONSTRUCTION AFFECTS CLEANING

In order to clean a vacuum component to the highest standards — e.g. capable of working at UHV
with very low levels of contaminant species in the residual vacuum — at the design stage careful
consideration must be given to how the item is to be cleaned. In particular, crevices, blind holes,
cracks, trapped volumes, etc., should be avoided as these will act as dirt and solvent traps. It can be
very diff icult to remove both dirt and solvent from such areas. Fortunately, good vacuum practice
regarding trapped volumes will also result in a component that avoids these problems.

A good design working at lower vacuum levels will also seek to remove any such traps.

One component that must be cleaned with particular care is thin-walled edge-welded bellows
often used for motions in vacuum. Care must be taken that the cleaning process does not cause
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particles to be left in the convolutions, since these can puncture the bellows when it is compressed.
Alkaline degreasers can be particularly prone to this as they often deposit precipitates. During
cleaning, the bellows should be fully extended and a careful final wash with demineralised water and
a blow dry with hot compressed air, both inside and out, must be done.

If the process uses chlorinated hydrocarbon solvents then these must be removed completely by
heating, as any left behind can corrode the bellows, leading to leaks. This last point is particularly true
for accelerators, where the atmosphere in accelerator tunnels can often be warm and humid. The
radiation environment also promotes enhanced corrosion, leading to premature failure of the welds.

6. CHEMICAL CLEANING AGENTS

A chemical cleaning agent is simply any substance that might lead to removal of an unwanted
contaminant. They will generally be liquids of some sort and will work either by dissolving or by
reacting with the contaminant or by removing the surface layers of the substrate and hence liberating
the contaminant.

Care has to be exercised that the cleaning agent itself does not introduce contaminants. This
will obviously depend on the end use of the item being cleaned. For example, as noted above,
hydrocarbons are often a serious contaminant in a vacuum system. However, in mineral oil sealed
mechanical vacuum pumps, e.g. rotary pumps, this is not the case as much of the mechanism is of
necessity bathed in hydrocarbons. Therefore a major manufacturer of such pumps uses a hydrocarbon
mix to clean the piece parts for his pumps and enjoys the benefit of residual lubrication and corrosion
protection on parts not normally lubricated by the pump fluid. In most cases, however, what is desired
is an agent that will remove contamination from the item without recontaminating it in some way.
The operator has therefore to ensure that the solvent is changed regularly before the build up of
contamination in solution becomes a problem. Examples of some typical cleaning agents are shown in
Table 1. The table should be read with caution and is to be regarded as a starting point only. In all
cases, manufacturers data sheets should be consulted and expert technical advice sought before using
agents of this type.

Table 1
Some typical cleaning agents

Agent Examples Advantages Disadvantages Disposal
Water Cheap; readily available Need to use demineralised for

cleanliness.  Not a strong solvent
To foul drain.

Alcohols Ethanol,
methanol,
iso-propanol

Relatively cheap,
readily available,
quite good solvents.

Need control – affect workers,
some poisonous, some
flammable, stringent safety
precautions.

Evaporate or
controlled disposal.

Organic
solvents

Acetone, ether,
benzene

Good solvents, evaporate
easily with low residue.

Either highly flammable or
carcinogenic.

Usually evaporate!

Chlorofluoro-
carbons
(CFCs)

Freon™
(CFC-113)

Excellent solvents,
evaporate easily with
low residue.

Banned! Strictly controlled –
must not be allowed
to evaporate.

Chlorinated
hydro-carbons

Methyl chloroform;
trichloroethylene
(“Trike”)

Excellent solvents, non toxic,
low boili ng point,
low residue.

Methyl chloroform banned.
Trike may be banned.  Toxic,
require stringent safety
precautions.

Strictly controlled.

Detergents Aqueous solutions, non
toxic, cheap and readily
available, moderate solvents.

Require careful washing and
drying of components.  Can leave
residues.

To foul drain after
dilution.

Alkaline
degreasers

Almeco™, sodium
hydroxide.

Aqueous solutions,
non toxic, moderate solvents.

Can leave residues and may
deposit particulate precipitates.

Requires neutralisa-
tion, then dilution to
foul drain.

Citric acid Citrinox™ Cheap and readily available,
quite good solvents.

Require careful washing and
drying of components.  Can leave
residues.  Unpleasant smell .

To foul drain after
dilution.
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The majority of these agents are solvents, which dissolve the contamination present on a
surface. Some rely more on a simple washing action, flushing contaminant off the surface, as in a
water jet. Others, e.g. detergents, work mainly by reducing the attractive (van der Waals) force
between contaminant and surface atoms. Some work by chemical action e.g. by etching a thin layer
off the surface thus releasing the contaminant. The alkaline degreasers and citric acid work this way,
as do, to some extent, some detergents. It is important to understand how any particular agent
interacts with the materials to be cleaned in order to avoid unexpected side effects.

It should be carefully noted that, in some countries, some of these substances are either banned
or their use is strictly controlled under legislation or regulation. It is therefore imperative that the
operator consults the relevant authorities before implementing a process involving these agents.

7. CHEMICAL CLEANING OF SPECIFIC MATERIALS

Clearly, any cleaning process must not damage the component being cleaned. Most accelerator
vacuum systems are made from stainless steel or aluminium, and from now on we will concentrate
our discussion on matters particularly relevant to accelerators. However, contained within such
vacuum systems there may well be copper, titanium, berylli um, ceramics of various sorts, and various
other materials. Below we will note some cleaning processes that have proved to be satisfactory for
these materials.

7.1 Stainless steel

The procedure described below for cleaning stainless steel is a very high specification process for the
very demanding requirements of an electron storage ring where cleanliness is of paramount
importance. For less demanding applications, the procedure could stop at the appropriate point in the
procedure where requirements had been met.

• Remove all debris such as swarf by physical means such as blowing out with a high pressure air
line, observing normal safety precautions. Remove gross contamination by washing out,
swabbing or rinsing with any general purpose solvent. Scrubbing, wire

• It must be emphasised once again, however, that it is very important that the user checks that
any particular cleaning agent or process is safe for the materials to be cleaned.

• brushing, grinding, fili ng or other mechanically abrasive methods may not be used.

• Wash in a high pressure hot water (approx. 80oC) jet, using a simple mild alkaline detergent.
Switch off detergent and continue to rinse thoroughly with water until all visible traces of
detergent have been eliminated.

• If necessary, remove any scaling or deposited surface films by stripping with alumina or glass
beads in a water jet in a slurry blaster.

• Wash down with a high pressure hot (approx. 80oC) water jet, with no detergent, ensuring that
any residual beads are washed away. Pay particular attention to any trapped areas or crevices.

• Dry using an air blower with clean dry air, hot if possible.

• Immerse completely in an ultrasonically agitated bath of clean hot stabili sed trichloroethylene
for at least 15 minutes, or until the item has reached the temperature of the bath, whichever is
longer.

• Vapour wash in trichloroethylene vapour for at least 15 minutes, or until the item has reached
the temperature of the hot vapour, whichever is longer.

• Ensure that all solvent residues have been drained off , paying particular attention to any
trapped areas, blind holes etc.
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• Wash down with a high pressure hot (approx. 80oC) water jet, using clean demineralised water.
Detergent must not be used at this stage.

• Immerse in a bath of hot (60oC) alkaline degreaser (P3 Almeco P36) with ultrasonic agitation
for 5 min. After removal from the bath carry out the next step of the procedure immediately.

• Wash down with a high pressure hot (approx. 80oC) water jet, using clean demineralised water.
Detergent must not be used at this stage. Ensure that any particulate deposits from the alkaline
bath are washed away.

• Dry using an air blower with clean dry air, hot if possible.

• Allow to cool in a dry, dust free area. Inspect the item for signs of contamination, faulty
cleaning or damage.

• Vacuum bake to 250oC for 24 hours using an oil -free pumping system.

• Reduce the temperature to 200oC and carry out an internal glow discharge using a helium/10%
oxygen gas mix.

• Raise the temperature to 250oC for a further 24 hours then cool to room temperature.

7.2 Aluminium

The CERN specification for aluminium chambers is as follows -

• Spray with high pressure jets at 60oC with a 2% solution of Almeco 29 (an alkaline
detergent).

• Repeat with a 2% solution of Amklene D Forte.

• Rinse thoroughly with a jet of hot demineralised water.

• Dry with hot air at 80oC.

Another procedure known to give good results is:

• Immerse in sodium hydroxide (45 gm-1 of solution) at 45oC for 1 – 2 min.

• Rinse in hot demineralised water.

• Immerse in an acid bath containing nitric acid (50% v/v) and hydrofluoric acid (3% v/v).

• Rinse in hot demineralised water.

• Dry in warm air.

7.3 Copper

Under most circumstances, copper can be cleaned using the same procedures as for stainless steel.
However, it should be noted that some of the proprietary formulations of alkaline degreasers attack
copper and leave surface stains. Organic solvents are usually all right, and cleaners based on citric
acid are very good for copper. Indeed, some of these are formulated specifically for this purpose. As
always, thorough washing in hot demineralised water and drying in warm, dry air should be
undertaken.

Copper is particularly susceptible to surface staining, fingerprints showing up very well ! Under
some conditions, light surface oxidation tales place which results in a visible blackish film on the
surface. As long as this is not a thick, friable or flakey deposit, it will not usually be a problem in
vacuum, since it thermally disassociates quite readily.
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7.4 Berylli um

Working with berylli um is subject to stringent safety requirements and the appropriate safety
authorities must always be consulted before carrying out any such work. However, provided that care
is taken to ensure that no particulates are generated and that suitable precautions are taken,
components may be handled safely. Impervious gloves should always be worn when handling
berylli um and any skin abrasions or cuts should be covered up.

No stripping, cutting, machining or abrasive operations may be carried out on berylli um except
in purpose built faciliti es. Otherwise, berylli um may be cleaned in accordance with the procedures for
stainless steel.

7.5 Titanium

Titanium may be successfully cleaned as for stainless steel.

7.6 Glass

Simple detergents and hot water washing are effective for cleaning glass.

7.7 Ceramics

Alumina powder in a water or an isopropanol carrier may be used to remove surface marks from
ceramics such as alumina or berylli a. Baking in air to the highest temperature that the material can
stand or to 1000oC, whichever is lower, is very effective for removing contamination from the surface
pores of the material.

8. PHYSICAL CLEANING TECHNIQUES

8.1 Blowing

A jet of compressed air or inert gas is a useful technique to remove particulates and liquids,
particularly from blind holes, as well as surface dust.  A laboratory or site compressed air supply may
be used provided that the air supply derives from an oil -free compressor. It should be distributed via
cleaned and dried air lines and there should be particulate filt ration at or near the point of delivery.
Alternatively, bottled gas, e.g. nitrogen, may be used, but again the delivery line should be clean and
dry.

8.2 Bead blasting

A jet of alumina or sili ca or some other inert material in the form of small beads is directed onto a
surface and physically strips material away. The carrier may be either air or water. The latter is
gentler, but both techniques carry the risk of driving contaminants (and beads!) into the surface. Some
surface damage may occur. However this is a useful technique for stripping, for example, deposited
metal films from the inside of vacuum vessels.

8.3 “ Snow” cleaning

This technique uses a jet of pellets of solid carbon dioxide that is directed onto the surface. This is a
non-impact technique that is good for removing particulates and also apparently some hydrocarbon
films. It is however, expensive and noisy.

Unlike bead blasting, the technique does not damage the surfaces being cleaned, since the solid
CO2 does not impact the surface. As the particles, usually in the form of small cylindrical pellets,
approach the surface at high speed, the shock wave travelli ng ahead of the particle is reflected from
the surface and interacts with the pellets, which sublime. The cleaning action is effected through a
cavitation process in the compressed gas as it reflects from the surface.
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8.4 Cutt ing and gr inding

Cutting and grinding are used to remove surface layers. Both have their place provided they are done
with care. Each technique usually requires a lubricant between tool and workpiece, which for vacuum
use is best to be either water or water based, although a good alternative is alcohol. If possible dry
cutting is best.

There is a danger of driving contaminants, cutting fluids and swarf into the surface where they
can remain trapped.

8.5 Polishing

Polishing is a gentle form of grinding and carries the same dangers. However fine hand polishing is
often required to remove surface blemishes. A useful material for this is ScotchBrite that is
essentially fine alumina in a polymeric carrier in the form of a loose weave mat. Diamond powder
wetted with alcohol and applied on a lint free pad is also acceptable. Polishing involving pastes and
waxes is to be avoided

Small components are often polished in a tumble polisher in that they are immersed in a bath of
small wet stones or steel pellets of various shapes which is gently stirred or tumbled.

9. PASSIVATION

As far as cleaning is concerned, passivation techniques are essentially ones that prevent the
adsorption of contaminants into the surface of a vacuum system or prevent the permeation of gas from
the bulk material into the vacuum system. By and large, these involve the formation of a barrier layer
of some sort on the surface.

Some examples are

• oxide films, produced by air baking, glow discharge or other techniques.

• coatings, such as TiN or BN put on the surface by sputtering. These have not been much
used except in demonstration systems and will not be discussed further here.

• active films, li ke getters or NEG. These are discussed in other chapters of these
proceedings.

10. SPECIAL CLEANING TECHNIQUES

10.1 Ultrasonic cleaning

This is essentially a method of enhancing a chemical cleaning process. Figure 2 shows the principles
involved. The figure shows a two stage cleaning plant (Fig. 2(a)). The workpiece is first suspended in
the hot liquid (darker shade) in the left-hand tank. The ultrasonic transducers set up a pattern of
ultrasonic waves in the liquid. As these waves reflect off the surface of the workpiece, interference
takes place and a series of cavitation bubbles are generated (Fig. 2(b)). Collapse of these bubbles
results in contamination particles being dragged off the surface. The contamination then either
dissolves in the liquid or, if insoluble, eventually drops to the bottom of the tank as sediment. The
result is an enhanced cleaning process. As jobs are cleaned, the liquid in the ultrasonic tank gradually
becomes more contaminated and eventually some of this remains on the surface of the workpiece, or
indeed may be transferred to it from the liquid. To ensure full cleanliness, the workpiece is withdrawn
from the liquid and is suspended in the second (right-hand) tank in the solvent vapour (lighter shade).
This vapour is generated by the boili ng liquid solvent at the bottom of the vapour stage tank. The
vapour condenses on the workpiece so that it is washed in the pure liquid solvent condensate that
drops back into the boili ng liquid, taking the residual (soluble) contamination with it. At the top of
both baths are cooling coils that condense the vapour before it can escape from the open top of the
tank. These coils are arranged so that the liquid runs back into the ultrasonic stage. This pure liquid
solvent tops up the ultrasonic tank and contaminated solvent flows over the dam into the boiler. Thus
a distill ation process is set up with the contamination gradually being concentrated in the bottom of
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Fig. 3  Outgassing rate as a function of surface roughness

the vapour stage and the liquid in the ultrasonic tank remaining relatively pure, hence enhancing the
li fe of the solvent charge.

(a) (b)

10.2 Electropolishing

Electropolishing has often been assumed to reduce outgassing by reduction of the surface area
presented to a vacuum system. In practice, for any technological metal surface, the real surface area is
very much larger (factors of several) than the physical area, because on a macroscopic scale there will
be many pits, grooves, cracks, grain boundaries and other defects. Although electropolishing does
indeed remove surface asperities and smoothes the edges of cracks, the actual benefit achieved is not
very great. However, electropolishing does remove the amorphous surface layer that is formed when
polishing a metal surface (the so-called Beilby layer). It replaces this layer with a relatively well
ordered surface oxide layer, which may have barrier properties preventing diffusion (particularly of
hydrogen) out from the bulk of the metal into the vacuum.

On the other hand, electropolishing may introduce hydrogen and other contaminants into the
surface layers in significant quantities. These can subsequently diffuse out and actually increase the
outgassing rate over that of the starting material. Electropolished components require a good bake
(preferably at 450oC) to thoroughly outgas the surface in order to see any real benefit.

Despite many studies over a long time, it is only in some recent very careful work on
aluminium prepared by various techniques that a correlation between surface roughness and
outgassing rate has been demonstrated and even in these results there are some anomalies (Fig. 3).

Fig. 3  Outgassing rate as a function of surface roughness. Fig. 4  Schematic of glow discharge apparatus [2]



148

10.3 Glow discharge

Glow-discharge cleaning is an effective final cleaning process which reduces outgassing and
desorption rates. It achieves this essentially by three mechanisms

• The bombardment of a surface by medium energy ions (a few hundred eV) directly
desorbs gas adsorbed on the surface and absorbed in the sub-surface region.

• If the discharge gas contains oxygen (or water), oxygen ions (O2

+ and O+) are created in
the discharge. These can react with the adventitious carbon which is always present on a
surface to form CO and CO2 which can be pumped away. Carbon overlayers, usually
graphiti c or amorphous in character, seem to act as gas reservoirs on a surface.

• A good, well ordered oxide film is generated on the surface which acts as a diffusion
barrier.

For accelerators, it is normal to use a simple dc glow discharge, although an ac (rf) discharge
may also be used. Figure 4 shows a typical set-up for dc discharges.  A gas is admitted to the vessel to
be cleaned and a positi ve dc potential of a few hundred volts is applied to a rod or wire electrode
along the axis of the vessel. If the gas pressure is of the order of a few tenths of a mbar (dependent on
the actual gas being used and the precise geometry of the vessel) a discharge will be struck and a
visible glow seen. The gas molecules are ionised in this discharge and are accelerated to the grounded
walls of the vessel which they strike with moderate energies. It is advantageous to stream the gas
along the vessel, admitting it at one end and pumping at the other. At these pressures the flow is
viscous and this helps to sweep the desorbed gases from the system.

Various gas mixtures have been used. Ar/10% O2 is the traditional mix and is very eff icient;
pure O2, pure N2, pure H2 and He/10%O2 have also been used effectively. There are a number of
criteria which are used in selecting the gas. Of criti cal importance is whether sputtering of the metal
surface is a problem or not. If there are insulators present, then sputtering can cause conducting films
to be deposited over their surfaces if they are exposed to the sputtered atoms. Oxygen in the mix
seems to help alleviate this by forming thermally unstable metal oxides that are removed from the
surface in the discharge. Lighter species sputter less eff iciently and so help obviate the problem. Also,
heavier gas ions can become buried in the metal surface and can diffuse out over time. This may or
may not be a problem depending on the application. Carrying out the discharge at elevated
temperature (e.g. 200oC) helps minimise such accumulation. Thus the discharge can be conveniently
carried out during a bake cycle.

It is helpful to know when to terminate the glow discharge. If , as has been suggested above, the
primary benefit is achieved by the removal of adventitious carbon by forming CO and CO2, then
monitoring the concentration of C12 in the discharge exhaust gas with a residual gas analyser will give
a termination point when this concentration ceases to reduce. For particle accelerators, this procedure
is usually carried out as part of the pre-installation processing programme, since in situ glow
discharge is diff icult in practice.

The benefits of glow-discharge cleaning for particle accelerators are by no means fully
established. For proton machines fabricated from stainless steel the benefits are well established. For
electron machines where the beam space tends to be surrounded by copper, the evidence is not well i n
place, although it is believed to be beneficial. A definiti ve experiment is planned for ANKA in the
near future. Figure 5 shows data from two laboratories showing the effect of glow discharge cleaning
stainless steel on, respectively, outgassing rates and photodesorption yields.

10.4 Air baking

This procedure involves baking vacuum components at normal bake temperatures (250oC) in air. It
reduces outgassing rates considerably, particularly for hydrogen. It was thought to work by inducing a
barrier oxide layer, but may simply work by depleting the hydrogen from the bulk.

The technique is much favoured in the gravitational wave detector community but its value for
accelerators is unproven.
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10.5 Chemical “ baking”

An interesting idea originating in Japan is to use a chemical which has a particular aff inity for water
to react with the water adsorbed on a surface in such a way that the reaction products are gases which
may be pumped away.

One such chemical is dichloropropane where the reaction is

(CH3)2CCl2 + H2O → (CH3)2C=O + 2HCl

This technique is claimed [4] to reduce the base pressure in a vacuum system by factors of 80.

However, the technique has to be carried out at a moderate temperature (80oC) so it is unclear
what advantages this technique has in practice over a simple bake.

11. SAFETY

Safety is of paramount importance when choosing a cleaning process. For example, many processes
use very hot liquids and/or large baths of chemicals.

Organic solvents, in particular, can be

• toxic (poisonous)

• flammable

• environmentally dangerous (e.g. ozone depleters).

When such solvents are used, it must be in properly designed plant suitable for the task. Vapour
extraction and recovery systems must be installed. If the vapour is toxic or otherwise injurious to
health, personnel should wear proper protective clothing and equipment, as well as individual
monitors measuring their exposure to the vapour in the atmosphere. Alarms linked to atmospheric
sampling monitors must be fitted near the cleaning plant. Breathing apparatus will be required when
changing solvents and cleaning tanks.

(a) (b)

Fig. 5  (a) The effect of glow discharge cleaning on total outgassing rates. Between each curve (from top to bottom) is a
further “dose” of in-situ glow discharge. (b) The effects of various cleaning treatments on partial photo-desorption yields

as a function of photon dose. We simply note here that the curves labelled “A” are after a glow discharge [3].



150

If the solvent is flammable, then proper fire precautions will be required, including intrinsically
safe electrical supplies.

When acids and alkalis are being used, neutralising pits and emergency neutralisation faciliti es
and spill containment measures will be required.

Special buildings with controlled access may be required and rigorous operator training is
essential.

12. COST

Cleaning to high standards can be costly. For large vessels and pieces of equipment, large cleaning
baths are required, often containing many thousands of lit res of expensive cleaning fluids that need to
be changed regularly. Lifting and handling equipment that does not introduce contamination into the
cleaning fluids, e.g. through oil drips, will be required.

The safety precautions outlined in Section 11 are expensive. It is therefore very important to
clean only to the standard required and not to over specify a cleaning process as this will be
uneconomic and wasteful.

13. HOW DO WE KNOW A SURFACE IS CLEAN?

There are two different approaches to determining whether or not a surface is clean. The more
fundamental one is to perform a chemical analysis of some sort on the surface to determine what is
there. Techniques are readily available to do this and the more common of these are discussed below.
However, this does beg the question of what we actually mean by a clean surface. In much of surface
physics and chemistry the answer is relatively straightforward since, in general terms, the
experimenter will know what the “native” material is, be it a single crystal metal, an amorphous
semiconductor film, or whatever. Anything else is “contamination” so the surface is “not clean” .
However, when dealing with the real technological surfaces of vacuum vessels or components where
the macrostructure of the surface is complex (as noted above in Section 10.2) it is by no means
obvious what actually should be there. For example, in a low-carbon steel, should surface carbon be
regarded as part of the alloy or is it a contaminant? If there is excess chromium at the surface of a
stainless steel over the bulk alloy concentration, is it a contaminant or is it an essential part of surface
passivation?

Hence such analyses may raise more questions than they solve. In any case, they may or may
not affect the controlled atmosphere we are seeking to obtain by using vacuum in the first place.

The second approach is more pragmatic and simply seeks to measure the properties of interest:
if we want low pressures, measure outgassing rates; if we want low partial pressures of particular
species in the residual atmosphere, measure them; if we want low desorption yields, measure them.
To study the effects of cleaning treatments, one should measure in a systematic way how the
properties of interest change. Unfortunately, few such systematic studies have been undertaken and
published, so there are poor statistics on the eff icacy of cleaning processes. This is why results in the
literature are not definiti ve and why there are so many tenaciously defended but different recipes in
the folklore.

14. SURFACE ANALYTICAL TECHNIQUES

14.1 Auger Electron Spectroscopy (AES)

AES is a surface sensiti ve technique that detects all elements except hydrogen and helium on a
surface. The fundamental mechanism is ill ustrated in Fig. 6. An incoming electron or photon ejects an
electron from a core level of an atom to create a hole. This hole is fill ed by an electron falli ng from a
higher energy level. The energy thus released is transferred to a third electron (the Auger electron)
which is ejected into the vacuum.
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Fig. 6  Principles of two types of electron spectroscopy –
XPS and AES [5]

Fig. 7  Auger electron spectra from stainless steel before and
after glow discharge. Note how impurities such as carbon,
sulphur and chlorine disappear, whereas the native iron
peaks increase. Note also the implanted argon after the
discharge [6].

The energies of Auger electrons are essentially fixed and depend only on the ejecting atom.
Thus measuring a spectrum of such ejected electrons from a solid, when bombarded by electrons or
photons, can perform a chemical analysis of the solid. Since the Auger electrons are at relatively low
energy (less than a few hundred eV) they can only escape from the surface layers of the solid without
being scattered and losing energy, so the technique is surface composition sensiti ve. In practice the
energies of the Auger electrons and the detailed shapes of the spectral li nes vary slightly dependent on
the chemical state of the emitting atom. Thus for example, it is perfectly straightforward to
differentiate between a layer of graphite-li ke carbon, amorphous carbon or diamond-like carbon on a
surface.

The technique is quantitative and has a surface compositional sensiti vity of about 0.1%,
dependent on the species concerned. Typical spectra, showing the effect of glow discharge on a
stainless steel surface, are shown in Fig. 7. Note that these spectra are differentiated so that the
spectral li nes show up more easily against the background. AES is essentially a small -area sampling
technique which cannot easily be used in-situ so tests are normally carried out on small coupon
samples.

14.2 X Ray Photoelectron Spectroscopy (XPS)

This technique is similar to AES, but uses X-rays that penetrate somewhat deeper into the surface,
although the emitted electrons may come only from the surface layers, dependent on their energy.
The mechanism is again shown in Fig. 6. Note that here what is detected is the first ejected electron
i.e. the one which leaves the core hole behind. Subsequent relaxation can then be via the Auger
process, so both types of spectroscopy can be carried out simultaneously. The energies of the
photoelectrons are at a fixed value below the energy of the incoming photon, the difference being
characteristic of the emitting species. The technique is quantitative, in principle being more sensiti ve
than AES, although less surface specific. It is therefore diff icult to quote a sensiti vity figure for
surface analysis. It provides much richer information on the chemical state of the emitter than AES.
Again, it is a sampling technique.
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14.3 Secondary Ion Mass Spectroscopy (SIMS)

This technique uses a beam of ions (often argon) to knock atoms off a surface. These are then
detected as ions in a mass spectrometer. Both positi ve and negative ions are produced and, in
principle, sputtered neutrals can also be detected. It is very sensiti ve but produces an abundance of
information that is very diff icult to interpret. It is semi-quantitative. The technique is useful for
detecting compositional differences between different parts of a surface e.g. across a contamination
patch. It is surface sensiti ve, provided a low energy and low intensity incident beam is used.
Prolonged exposures can drill down through the surface layers and provide information on changes in
composition with depth.

14.4 Laser Ionisation Mass Spectroscopy (LIMA)

This technique is similar to SIMS but uses a high intensity laser beam as the primary source of
excitation. Ablation rates are generally higher than for SIMS so the surface sensiti vity is lower.

15. PHENOMENOLOGICAL METHODS

As has been noted above, these essentially rely on measuring what one needs to know in order to
achieve the desired result.

For vacuum purposes, these will essentially be measurements of total and partial outgassing
rates or stimulated desorption yields, using photons, electrons or ions as appropriate. All of these
techniques are discussed in detail elsewhere in these proceedings.

Although from a practical point of view it is diff icult to apply these techniques quantitatively,
by using standard methods, preferably in a single experimental station, it is possible to produce
accurate comparisons of the eff icacy of various cleaning techniques. Hence trends can be well
established. It should be noted that it is very diff icult to make meaningful quantitative comparisons
between work carried out using different techniques and even between work in different laboratories
using the same technique.

16. RECONTAMINATION

Once something has been cleaned, it may or may not remain clean! Care has to be exercised to ensure
that it does not become recontaminated. The precautions required will , of course, be dependent on the
degree of cleanliness required.

Some points to note are

• A vacuum surface should never be touched with bare skin. Clean, lint free gloves
should always be worn and arms, etc., covered up

• The operator should take care that he does not to drop bits of himself/herself into the
system, e.g. by wearing a hat or hood covering up hair and possibly the mouth and
nose.

• All tools should be clean. Not just the business end, but also the handles, so that they
do not transfer grease onto clean gloves.

• Smoking and the use of internal combustion engines should be prohibited near an open
vacuum system.

• The gas used to let up the vacuum system should be clean.

• The gas should also be dry. Figure 8 ill ustrates the change in outgassing rate achieved
by using nitrogen containing various concentrations of water vapour to let up a vacuum
system.

• Nothing should be left in the system that should not be there, e.g. tools or rags.

• Vacuum items should be stored and transported under vacuum or dry nitrogen rather
than being left open to the elements after cleaning
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Fig. 8  The outgassing rate and water partial pressure in a vacuum system after letting up with nitrogen containing varying
concentrations of water vapour [7].

17. SUMM ARY

This paper has summarised briefly various techniques for cleaning vacuum systems and components
and indicated what factors are of importance in choosing which should be used in particular
circumstances. It has also discussed how one might be confident that a vacuum system is indeed clean
enough for the purposes to which it might be put.

Nevertheless it must be strongly emphasised that it is only the users of any vacuum system who
can determine what is required and if it has been achieved, so it is imperative that in any given
situation suitable tests are carried out to establish that confidence.
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